
STERA 3D 

STructural Earthquake Response Analysis 3D 

Technical Manual 
Version 7.6 

Dr. Taiki SAITO 

TOYOHOSHI UNIVERSITY OF TECHNOLOGY (TUT), JAPAN 

1



UPDATE HISTORY 

 

2017/01/18 STERA_3D Technical Manual Ver.5.5 is uploaded. 

“5.5 Modal analysis” is modified including participation factor, effective mass, etc. 

2017/03/20 STERA_3D Technical Manual Ver.5.6 is uploaded. 

“7.4 Calculation of ground displacement” is modified changing band-pass filter. 

2017/10/08 STERA_3D Technical Manual Ver.5.7 is uploaded. 

Ground springs are added. 

2017/10/24 STERA_3D Technical Manual Ver.5.8 is uploaded. 

“4.6 Mass matrix corresponding to independent degrees of freedom” is added. 

2019/02/12 STERA_3D Technical Manual Ver.6.0 is uploaded. 

2019/05/20 Radiation damping for ground springs is added. 

2019/07/25 External force by Wind is added. 

2019/10/08 Buckling hysteresis of a brace is added. 

2020/03/16 Pile foundation is included for ground springs. 

  Air spring is added for an external spring. 

2021/10/10 STERA_3D Technical Manual Ver.7.0 is uploaded. 

For RC column and RC wall, the nonlinear bending springs independent in x and y 

directions are introduced. 

For Steel beam, the nonlinear shear spring for hysteresis damper is introduced. 

Damage indices of members are introduced. 

2022/08/22 STERA_3D Technical Manual Ver.7.1 is uploaded. 

 The model of the direct input wall is changed to be the lumped mass model. 

 For external springs, models of the base plate and the pendulum spring are introduced. 

2022/12/14 STERA_3D Technical Manual Ver.7.2 is uploaded. 

 For base isolation elements, FPB (Friction Pendulum Bearing) is introduced. 

2023/03/13 STERA_3D Technical Manual Ver.7.3 is uploaded. 

 The formula of compression strength of Masonry element is changed. 

2023/06/06 STERA_3D Technical Manual Ver.7.4 is uploaded. 

 Viscoelastic damper is added to the passive damper. 

2024/07/15 STERA_3D Technical Manual Ver.7.5 is uploaded. 

 Viscoelastic damper is added to the shear spring of direct beams. 

2025/08/02 STERA_3D Technical Manual Ver.7.6 is uploaded. 

 Nonlinear model of the viscoelastic damper is modified. 
Vertical viscous damper is added to the external spring. 

The model of HDRB (high damping rubber bearing) is updated. 
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1. Basic Condition 

 

1.1 Coordinate 

 

(1) Global Coordinate 

 

The global coordinate is defined as the left-hand coordinate as shown in Figure 1-1-1.  
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(a) lateral and rotational displacement (b) shear displacement 
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(2) Local Coordinate 

 

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named 

with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a 

beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the 

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2. 
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Figure 1-1-2 Local coordinate of a beam element 
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2. Constitutive Equation of Elements 

 

2.1 Beam 

 
Force-displacement relationship for elastic element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is 

expressed as follows: 
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where, E , yI , A  and 'l  are the modulus of elasticity, the moment of inertia of the cross-sectional area 

along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of the 

nonlinear bending springs is, 
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where, yAf  and yBf  are the flexural stiffness of nonlinear bending springs at both ends of the element.  
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The force-deformation relationship of shear spring is 

z z zQ k s  or 1z z zs k Q  

From the relationship between shear force and moment, 
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The end rotational displacement due to shear deformation is obtained as, 
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where, szk  is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam 

element is obtained as the sum of the above three displacement vectors. 
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where, 
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][ Bf   is the flexural stiffness matrix of the beam element. By taking the inverse matrix of ][ Bf  , the 

constitutive equation of the beam element is obtained as, 
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where, ][ Bk  is the stiffness matrix of the beam element. 
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Including rigid parts and node movement 

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is, 
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From node axial displacements, relative axial displacement is, 

xAxBx'         (2-1-8) 
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Combining Equations (2-1-7) and (2-1-9), 
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A B 

 

 

  

 

 

 

 

 

 

 
 

 

X 

Z 

Figure 2-1-2 Including rigid parts and node movement 
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Out of plane deformation of beam 

If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the 

rotational displacement vector is, 
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We can summarize for both ends as 
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Figure 2-1-3 Beam displacement with rigid connection (X-Y plane) 
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From global node displacement to element node displacement 

Transformation from global node displacements to element node displacements is, 
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The component of the transformation matrix, ][ ixBT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

n

xB

n

ixBBB

x

yB

yA

u

u
u

T

u

u
u

Tn 2

1

2

1

'
'
'

     (2-1-14) 

 

Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from the element face displacement as, 
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In case of Y-direction beam 

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global 

coordinate, transformation of the sign of the vector components of the element coordinate is, 
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Transformation from the global node displacement to the element node displacement is, 
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Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the X-beam is, 
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For Y-beam, 
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2.2 Column 

 

Element model for column is defined as a line element with nonlinear bending springs at both ends and two 

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1. 

 

Force-displacement relationship for elastic element 

In the same way as the beam element, the relationship between the displacement vector and force vector of 

the elastic element is, 
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The axial displacement is, 
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The torsion angle by torque force is, 
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where, G  and zI  are the shear modulus and the pole moment of inertia of the cross-sectional area. 
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Force-displacement relationship for nonlinear bending springs 

 

Case 1: In the case that bending springs in x and y directions are independently defined 

 

 

The rotational displacement vector of the nonlinear bending spring is defined independently, 

'yA yA yAf M , 'xA xA xAf M    at end A     (2-2-5) 

'yB yB yBf M , 'xB xB xBf M    at end B     (2-2-6) 

where, yAf , xAf , yBf , and xBf  are the flexural stiffness of nonlinear bending springs at both ends of the 
element.  
 

It can be expressed as 
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Case 2: In the case that nonlinear interaction between moment and axial components is considered 

 

Nonlinear interaction zyx NMM  is considered in the nonlinear bending springs, 
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where, ][ pAf   and ][ pBf   are the flexural 

stiffness matrices of the nonlinear bending springs. 

Therefore, the force-displacement relationship of 

nonlinear bending springs is, 
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Rearrange the order of the components of the displacement vector and change the node axial displacements 

into the relative axial displacement, 
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The force-displacement relationship is then expressed as, 
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Figure 2-2-3 Nonlinear bending springs 
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Force-displacement relationship for nonlinear shear springs 

 

Case 1: In the case that shear springs in x and y directions are independently defined 

 
The force-deformation relationship of shear spring is 
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From the relationship between shear force and moment, 
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The end rotational displacement due to shear deformation is obtained as, 
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Case 2: In the case that nonlinear interaction between shear and axial components is considered 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The force-deformation relationship of shear spring is 
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From the relationship between shear force and moment, 
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The end rotational displacement due to shear deformation is obtained as, 
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Both cases can be written in  
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The displacement vector of the column element is obtained as the sum of the displacement vectors of elastic 

element, nonlinear shear springs and nonlinear bending springs, 
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The flexural matrix ][ Cf  is; 
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By taking the inverse matrix of ][ Cf , the constitutive equation of the column element is obtained as, 
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Including rigid parts and node movement 

Change relative axial displacement and torsion displacement into node displacement, 
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Including rigid parts and node movement, 
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 Figure 2-2-6 Including rigid parts and node movement 
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From global node displacement to element node displacement 

Transformation from global node displacement to element node displacement is; 
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       (2-2-29)  

The component of the transformation matrix, ][ iCT , is discussed in Chapter 4 (Freedom Vector).  

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the column is; 
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       (2-2-31) 

where, 

CC
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Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from  
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2.3 Wall 

 

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three 

nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown in 

Figure 2-3-1. 

 

Force-displacement relationship for elastic element 

In the same way as the beam element, the relationship between the displacement vector and force vector of 

the elastic element is, 
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The axial displacement is, 
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Figure 2-3-1 Element model for wall 
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Force-displacement relationship for nonlinear bending springs 

Nonlinear interaction zyx NMM  is considered in the nonlinear bending springs, 
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where, ][ pAf  and ][ pBf  are the flexural stiffness matrices of the nonlinear bending springs. Therefore, 

the force-displacement relationship of nonlinear bending springs is, 

Figure 2-3-2 Nonlinear bending springs 
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Rearrange the order of the components of the displacement vector and change the node axial displacements 

into the relative axial displacement, 
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The force-displacement relationship in Equation (2-3-7) is then expressed as, 
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Force-displacement relationship for nonlinear shear springs 
The force-deformation relationship of shear spring in the center is 

'xc sc xcQ k s ,     1 'xc sc xcs k Q  

'
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'
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M
Q l l
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The end rotational displacement due to shear deformation is obtained as, 
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where, sck , 1sk  and 2sk  are the shear stiffness of the nonlinear shear springs. 
 

The displacement vector of the column element is obtained as the sum of the displacement vectors of elastic 

element, nonlinear shear springs and nonlinear bending springs, 
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The flexural matrix ][ Wf  is; 
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By taking the inverse matrix of ][ Wf , the constitutive equation of the column element is obtained as, 
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Including rigid parts and node movement 

Change relative axial displacement and torsion displacement into node displacement, 
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Including rigid parts and node movement, 
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From global node displacement to element node displacement 

Transformation from the center displacements to the node displacements is, 
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Figure 2-3-3 Relationship between center and node displacements 
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Transformation from the global node displacements to the element node displacements is; 
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The component of the transformation matrix, ][ ixWT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction wall 
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Global coordinate 
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Local coordinate of Y-wall 

Figure 2-3-4 Relation between local coordinate and global coordinate 
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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      (2-3-21) 
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Transformation from the global node displacement to the element node displacement is; 
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Transformation from the global node displacement to the element face displacement is, 
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    (2-3-24) 

Constitutive equation 

Finally, the constitutive equation of the wall is; 
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where, 
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where, 
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Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from 
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Furthermore, in the same way as Equation (2-3-8), 
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Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as, 
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In case of direct input wall 

 

Direct input wall model is defined as a line element with a nonlinear shear spring and a nonlinear bending 

spring in the middle of the element as shown in Figure 2-3-1. 

 

This model can be used as an alternative model so called the lumped mass model representing the restoring 

force characteristics of each layer in the analysis of high-rise building as shown below. The detail of the 

model is described in Chapter 7.1 

 
Figure 2-3-6 Lumped mass model of high-rise building 
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Figure 2-3-5 Element model for wall 
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STERA_3D adopts the formulation to have nonlinear shear and bending springs of the element. 

 

 

 

 

 

 

 

 

 

Figure 2-3-7 Nonlinear bending and shear springs 

 

Force-displacement relationship 

The story drift angle, y , is composed of the shear component, ys , and the bending component, ym . 

x xs
y ys ym ymh h

      (2-3-32) 

where, x  is the story drift and xs is its shear component. In a matrix form 

1 xs
x

m

h        (2-3-33) 

The nonlinear shear spring is defined as 

x s xsQ k         (2-3-34) 

The nonlinear bending spring is defined as 
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By considering the relationship y
x

M
Q

h
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Therefore, the relationship between the story drift and the shear force is expressed as follows: 
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Including node movement 

The relationship between the shear spring displacement and nodal displacement is, 

From nodal displacement, 

x xB xAu u         (2-3-38) 

In a matrix form 
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From global node displacement to element node displacement 
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Transformation from the global node displacements to the element node displacements is; 
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The component of the transformation matrix, [ ]ixLT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the spring displacement is, 
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     (2-3-42) 

Constitutive equation 

Finally, the constitutive equation of the lumped mass model is; 
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Transformation matrix for nonlinear spring displacement 

The nonlinear spring displacement vector is obtained from the element face displacement as, 
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    (2-3-45) 
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2.4 Brace  

 

Element model for Brace is defined as a truss element with a nonlinear axial spring and pin-supported at both 

ends as shown in Figure 2-6-1. 

 
 

Force-displacement relationship 

 

The relationship between axial deformation and axial force of the truss element is, 

111 kN         (2-4-1) 

222 kN         (2-4-2) 

Replacing with the nodal force and displacement in local coordinate along the element, 

xx ffN 411
~~

,  xx uu 141
~~       (2-4-3) 

xx ffN 322
~~

,  xx uu 231
~~       (2-4-4) 

Figure 2-4-1 Element model for brace 
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In a matrix form, 
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    (2-4-6) 

 

From Figure 2-4-3, the relation between the nodal forces in local coordinate and those of global coordinate 

is, 

cossin~
sincos~

111

111

zxy

zxx

fff

fff
 for Brace 1    (2-4-7) 

and 

cossin~
sincos~

222

222

zxy

zxx

fff

fff
 for Brace 2    (2-4-8) 

 

Eq. (2-4-8) can be also obtained from the Eq. (2-4-7) by replacing  by  and using the formulas

coscos,sinsin . 
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In a matrix form, 
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 (2-4-9) 

where 

l
hs

l
wc sin,cos  

Since ICC T
bb ,  bC  is an orthogonal matrix, therefore, 

T
bb CC 1         (2-4-10) 

Figure 2-4-3 Coordinate transformation 
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(Brace 1) (Brace 2) 
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In a similar manner, from Figure 2-4-4, the relation between the nodal displacements in local coordinate and 

those of global coordinate can be obtained as, 

cos~sin~
sin~cos~
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zxz

zxx

uuu
uuu

  for Brace 1    (2-4-11) 

and 

cos~sin~
sin~cos~

222

222
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zxx

uuu
uuu

 for Brace 2    (2-4-12) 

 

Eq. (2-4-12) can be also obtained from the Eq. (2-4-11) by replacing  by  and using the formulas

coscos,sinsin . 

 
In a matrix form, 
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Figure 2-4-4 Coordinate transformation 
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The stiffness matrix of brace element is, 

2

1

2

1

2

1

0
0
k

k
N
N

 or   kN ~
    (2-4-13) 

Where 

uCnuCnun bb
T

bbb

1~     (2-4-14) 

NnCfCf T
b

T
bb

~1       (2-4-15) 

 

From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is; 

n

ixBr

u

u
u

Tu 2

1

        (2-4-16)  

The component of the transformation matrix, ][ ixBrT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

n

xBr

n

ixBrbbbb

u

u
u

T

u

u
u

TCnuCn 2

1

2

1

    (2-4-17)  

 

Constitutive equation 

Finally, the constitutive equation of the brace is; 

n

xBr

n u

u
u

K

P

P
P
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2

1

       (2-4-18) 

where, 

xBrBr
T

xBrxBr TkTK        (2-4-19) 
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In case of Y-direction brace 

In case of Y-direction brace, transformation of the sign of the vector components of the element coordinate 

is, 

GlobalBeamY
Z
Y
X

z
y
x
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001
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      (2-4-20) 

Therefore 
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  (2-4-21) 

Transformation from the global node displacement to the element node displacement is; 

n

iyBr

u

u
u

Tu 2

1

        (2-4-22)  

Transformation from the global node displacement to the element face displacement is, 

n

yBr

u

u
u

T 2

1

,  iyBrbbyBr TCnT      (2-4-23) 
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Global coordinate 
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Local coordinate of Y-wall 

Figure 2-7-2 Relation between local coordinate and global coordinate 
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Constitutive equation 

The constitutive equation of the Y-direction brace is; 

n

yBr

n u

u
u

K

P

P
P

2

1

2

1

       (2-4-24) 

where, 

yBrBr
T

yBryBr TkTK        (2-4-25) 
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In case of K-brace (or Cheveron brace) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the left half part, as we defined before for the ordinary brace, the stiffness equation of brace element is, 
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b
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   (2-4-26) 

where 
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For the right half part, in the same way, the stiffness equation of brace element is, 

RRR ukf   bbR
T

b
T

bR CnknCk ~
   (2-4-27) 

where 

T
zxzxzxzxR fffffffff 44662255  
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zxzxzxzxR uuuuuuuuu 44662255  

 

We can express the nodal displacement vector as, 
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We assume the displacements of intermediate nodes, 5 and 6, are calculated from those of end nodes as 

follows, 

 

436436

215215

2
1,

2
1

2
1,

2
1
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In a matrix form 
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Therefore, 
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         (2-4-30) 

Finally the force-displacement relationship of Cheveron brace is, 

bbL
T

b
T

bL CnknCk ~
      (2-4-31) 
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2.5 External Spring 

 

1) Axial spring 

 

Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-1 is 

expressed as follows: 
zyxikN iEi ,,,''       (2-5-1) 

zAzBz

yAyBy

xAxBx

uu
uu

'
'
'

        (2-5-2) 

Therefore 
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Figure 2-5-1 Element model for external spring 
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zB
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u

n
u
u
u
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110000'     (2-5-5) 

From global node displacement to element node displacement 

n

iE

zB
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yB

yA

xB
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u

u
u

T
u
u
u
u

2

1

       (2-5-6) 

The component of the transformation matrix, ][ iET , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

zyxi

u

u
u

T

u

u
u

Tn

n

E

n

iEiEi ,,,' 2

1

2

1

    (2-5-7) 

 

Constitutive equation 

The constitutive equation of the external spring is; 

n

E

n u

u
u

K

P

P
P

2

1

2

1

       (2-5-8) 

where, 

EE
T

EE TkTK        (2-5-9) 

52



2) Rotational spring 

 
Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-2 is 

expressed as follows: 

0
'

0
y ry y

rE
x rx x

M k
k

M k
     (2-5-10) 

y yB yA

x xB xA

        (2-5-11) 

Therefore 

1 1
1 1

yA yA

y yB yB
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x xA xA

xB xB

n     (2-5-12) 

From global node displacement to element node displacement 
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rE
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xB n

u
u

T

u

       (2-5-13) 

Figure 2-5-2 Element model for external spring 
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From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

1 1

2 2x
rE rE E

y

n n

u u
u u

n T T

u u

      (2-5-14) 

 

Constitutive equation 

The constitutive equation of the external spring is; 

n

E

n u

u
u

K

P

P
P

2

1

2

1

       (2-5-15) 

where, 

EE
T

EE TkTK        (2-5-16) 
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3) Pendulum element 

 

 

Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-3 is 

expressed as follows: 

' ' '
' ' '
' ' '

x h x x

y h y pE y

z v z z

Q k
Q k k
N k

     (2-5-17) 

From node displacements, relative displacements are; 

zAzBz

yAyBy

xAxBx

uu
uu

'
'
'

        (2-5-18) 

Therefore 

' 1 1
' 1 1
' 1 1

xA xA

xB xB
x

yA yA
y pE

yB yB
z

zA zA

zB zB

u u
u u
u u

n
u u

   (2-5-19) 

 

Figure 2-5-3 Element model for pendulum element 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 

1

2

xA

xB

yA
pE

yB

nzA

zB

u
uu
uu

T
u

u

       (2-5-20) 

The component of the transformation matrix, [ ]pET , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

1 1

2 2

'
'
'

x

y pE pE E

z
n n

u u
u u

n T T

u u

     (2-5-21) 

 

Constitutive equation 

The constitutive equation of the Base isolation is; 

1 1

2 2
E

n n

P u
P u

K

P u

       (2-5-22) 

where, 

T
E E E EK T k T        (2-5-23) 
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4) Vertical damper 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 = sin sin  = sin cos        (2-5-24) = cos  
 
The unit vector along the damper axis (direction vector) is = ( ), ( ), ( ) = ( , , )     (2-5-25) 
where = ( ), = ( ), = ( )    (2-5-26) 
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Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the elastic element is expressed as  

d dF k u  

where 

1
1

dA
d

dB

F
F

F
,  1 1 dA

d
dB

u
u

u
     (2-5-27) 

The node displacements at A and B along the axis are expressed using the displacement 
components in the x, y, z directions as, 

0 0 0
0 0 0
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dA yA

dB yB
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zB

u
u

u ul m n
u ul m n

     (2-5-28) 

From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 
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yA
vE

yB
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u
uu
uu

T
u

u

       (2-5-29) 

The component of the transformation matrix, [ ]vET , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 

1 1

2 20 0 0
1 1

0 0 0d vE E

n n

u u
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u T T
l m n

u u

   (2-5-30) 
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Constitutive equation 

The constitutive equation of the Base isolation is; 

1 1

2 2
E

n n

P u
P u

K

P u

       (2-5-31) 

where, 

T
E E E EK T k T        (2-5-32) 

 

 

59



2.6 Base Isolation 

 
 

Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the element is expressed as follows: 
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x
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Q
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       (2-6-1) 

Including the axial stiffness, 
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From node displacements, relative displacements are; 
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   (2-6-4) 

 

 

 

 

Figure 2-6-1 Element model for base isolation 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 

n

iBI
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2

1

       (2-6-5) 

The component of the transformation matrix, ][ iBIT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

The constitutive equation of the Base isolation is; 
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u
u
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P
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1

       (2-6-7) 

where, 

BIBI
T

BIBI TkTK        (2-6-8) 
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2.7 Masonry Wall 

 

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical 

spring in the middle of the wall panel as shown in Figure 2-6-1. 

 

Force-displacement relationship 

The relationship between the shear deformation and shear force of the nonlinear shear spring is, 

xcsxxc kQ ''         (2-7-1) 

For axial spring, 

2211 '','' zzzzzz kNkN       (2-7-2) 

In a matrix form, 
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    (2-7-3) 

 

Including node movement 

The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as, 

z
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x
xz         (2-7-4) 

where,  
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2
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Figure 2-7-1 Element model for masonry wall 
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The shear deformation, xc' , is then, 
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2
' xAxBxAxBzBzBzAzAxc uuuu

w
ll   (2-7-7) 

The axial deformation, 21 ',' zz , is, 
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In a matrix form, 
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(2-7-9)  

From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is; 
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The component of the transformation matrix, ][ ixNT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction wall 
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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Transformation from the global node displacement to the element node displacement is; 
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Transformation from the global node displacement to the element face displacement is, 
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Local coordinate of Y-wall 

Figure 2-7-2 Relation between local coordinate and global coordinate 
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Constitutive equation 

Finally, the constitutive equation of the wall is; 
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where, 
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For Y-wall, 
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where, 
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2.8 Passive Damper 

 

Element model for passive damper with a shear spring is defined as a line element with a nonlinear shear 

spring as shown in Figure 2-8-1. 

 

Force-displacement relationship 

The relationship between the shear deformation and shear force of the nonlinear shear spring is, 

xcsxxc kQ ''         (2-8-1) 

 

Including node movement 

The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as, 

z
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x
xz         (2-8-2) 

where,  
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The shear deformation, xc' , is then, 
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2
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w
ll   (2-8-5) 

The axial deformation, 21 ',' zz , is, 

222111 ',' zAzBzzAzBz       (2-8-6) 

 

In a matrix form, 

Figure 2-8-1 Element model for passive damper 

A 

B 

 

A1 A2 

B1 B2 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is; 
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The component of the transformation matrix, ][ ixDT , is discussed in Chapter 4 (Freedom Vector). 

 

From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction damper 

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate, 

transformation of the sign of the vector components of the element coordinate is, 
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Transformation from the global node displacement to the element node displacement is; 
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Local coordinate of Y-wall 

Figure 2-8-2 Relation between local coordinate and global coordinate 
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Transformation from the global node displacement to the element face displacement is, 
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Constitutive equation 

Finally, the constitutive equation of the damper is; 
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where, 
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For Y-damper, 
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where, 
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Appendix : Calculation of shear component 

 

For “Masonry Wall” and “Passive Damper”, the shear deformation is defined as follows: 

 

1) Shear deformation in one direction 

 
 

Shear strain is  
 

2) Shear deformation in two directions 

 

Shear strain is 1 2 lx / l ly / lx 

If we discuss small element x
u

y
u yx

   Eq. (2-7-4) and Eq. (2-8-2) 
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This definition is necessary to remove rotational component. To explain this, suppose there is only rotational 

(or bending) deformation, 

 
From the above definition, shear angle will be 

 -  
 
For example, in the upper story of the building under horizontal deformation, the bending 
component is dominant and the shear component is small. Therefore, the brace damper doesn’t 
work in the upper story.  

 

 

-  
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3) In case of damper element 

 

We define the shear angle in one direction as follows: 

 

We adopt the average angle, 

 

 1 2 )  
 

In the same way, the shear angle in another direction is 

 

 1 2 ) 
 

1 2 

'1 

'2 
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2.9 Floor Element 

 

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm in-

plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor 

element is constructed using a two dimensional isoparametric element. 

 

 

 

 

 

 

 

 

 

 

 

 

The stiffness matrix with 4-nodes isoparametric is expressed as, 
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The coordinate transfer function {x, y} is expressed using the interpolation functions as follows: 
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Figure 2-9-1 4-nodes isoparametric element 
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The deformation function {u, v} is also expressed using the same interpolation functions. 
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Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is expressed in the 

following form: 

 

V

TT Fudv     (2-9-4) 

where, is a virtual strain vector, is a stress vector, u is a virtual displacement vector and F  is a load 

vector, respectively. 

 

In case of the plane problem, the strain  vector is defined as, 
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Substituting equation (2-9-3) into equation (2-9-5), the strain vector is calculated from the nodal displacement 

vector as, 
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In the plane stress problem, the stress-strain relationship is expressed as, 
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2
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      (2-9-7) 

 C         

Substituting equation (2-9-6) into equation (2-9-7), 

 

C B u         (2-9-8) 

 

From the Principle of Virtual Work Method, 

FuuCBdxdyBudvCBuuB T

yxV
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V ),(

    (2-9-9) 

 

Therefore, the stiffness equation is obtained as, 

V

T CBdvBKKuF ,        (2-9-10) 

tdxdydv , 

),( yxV

T CBdxdyBtK        (2-9-11) 

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s coordinate to use 

the numerical integration method. Introducing the Jacobian matrix,  

MatrixJacobian
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the above integration is expressed in r-s coordinate as, 
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Evaluation of Jacobian Matrix 
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Evaluation of the matrix B 
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The derivatives 
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x
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In a matrix form, 

 

s
h

s
h

s
h

s
h

r
h

r
h

r
h

r
h

y
s

y
r

x
s

x
r

y
h

y
h

y
h

y
h

x
h

x
h

x
h

x
h

4321

4321

4321

4321

   

               

s
h

s
h

s
h

s
h

r
h

r
h

r
h

r
h

J
4321

4321

1    (2-9-17) 

 

Evaluation of partial derivatives of the interpolation functions 
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The 3 points Gauss Integration Formula is defined as: 
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The stiffness matrix is then calculated numerically as follows: 
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From global node displacement to element node displacement 

Transformation from global node displacements to element node displacements is, 
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        (2-9-

21) 
The component of the transformation matrix, ][ iFT , is discussed in Chapter 4 (Freedom Vector). 
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2.10 Connection Panel 

 

1) General case 

In the default setting, STERA3D assumes the rigid connection zone between column and beam. You can 

consider shear deformation of the connection area (we call “connection panel”) by the “Connection member” 

menu.  

 
Figure 2-10-1 Connection area 

 

Shear deformation of the connection panel, , is defined as shown in Figure 2-10-2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differences of displacement at node B and C are; 
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Figure 2-10-2 Definition of shear deformation 
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First we consider nodal movement without shear deformation of the connection panel. As shown in Figure 

2-10-3, the displacement at node B and node C will be; 
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  (2-10-2) 

Then, we consider shear deformation of the connection as shown in Figure 2-10-4. By adding Equation (2-

10-1) to (2-10-2), the displacement at node B and node C will be; 

 

 

 

 

 

 

 

 

Figure 2-10-2 Nodal movement without shear deformation of the panel 
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Figure 2-10-4 Nodal movement with shear deformation of the panel 
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2) Beam element 

In case of rigid connection, as described in Equation (2-1-7), the nodal displacement is expressed as, 
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Figure 2-10-5 Beam displacement with rigid connection 
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If we consider shear deformation of connection panel, from Figure 2-10-6, 
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Figure 2-10-6 Beam displacement with shear deformation of connection panel 
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The transformation matrices for beam element are; 

Including connection panel and node movement 
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From global node displacement to element node displacement 
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From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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In case of Y-direction beam 
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Transformation from the global node displacement to the element node displacement is, 
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Transformation from the global node displacement to the element face displacement is, 
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3) Column element 

 

In case of rigid connection, as described in Equation (2-2-16), the nodal displacement in X-Z plane is 

expressed as, 
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 (2-10-17) 

 
Figure 2-9-7 Column displacement with rigid connection (X-Z plane) 
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If we consider shear deformation of connection panel, from Figure 2-10-8, 

 

yBByAAyByBBxByAAxAyB

yBByAAyAyBBxByAAxAyA

yByBBxByAyAAxA

yByB

yAyA

yB

yA

u
l

u
l

u
l

u
l

l
lulu

5.05.05.0
'

1
'

1

5.05.05.0
'

1
'

1

'
5.0'5.0'

,
5.0
5.0

'
'

 

yB

yA

yB

yA

xB

xA

BABA

BABA

u
u

ll

ll
5.05.05.01

'
1

'
1

5.05.05.01
'

1
'

1

  (2-10-18) 

 
Figure 2-9-8 Column displacement with shear deformation of connection panel (X-Z plane) 
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In the same manner, assuming rigid connection, the nodal displacement of column in Y-Z plane is expressed 

as, 
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 (2-10-19) 

 

Figure 2-9-9 Column displacement with rigid connection (Y-Z plane) 
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If we consider shear deformation of connection panel, from Figure 2-10-10, 
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  (2-10-20) 

 
Figure 2-9-10 Column displacement with shear deformation of connection panel (Y-Z plane) 
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The transformation matrices for column element are; 

Including connection panel and node movement 
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From global node displacement to element node displacement 
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From global node displacement to element face displacement 

Transformation from the global node displacement to the element face displacement is, 
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4) Force-displacement relationship for the connection 

 

 

 

 

 

 

 

 

 

 

The relationship between the displacement vector and force vector of the element is expressed as follows: 
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k
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      (2-10-24) 

where, initial stiffness of connection area is, 

GVkk PyPx         (2-10-25) 

where, G is the shear modulus and V is the volume of the connection. 
 
1) Connection volume of RC members 
 
 
 
 
 
 
 
 
 

 
The volume is calculated as, = ( )( )( ) = , = ( )( )( ) 

where,   , ,  are the maximum size of attached beams in x, y, z direction, 

  is an adjustment factor 

 

 

 

 

 
 

Figure 2-9-11 Shear deformation of connection area 
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2) Connection volume of S members 
 
- Box column 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The volume is calculated as, = ( )(2 )( ) = , = ( )(2 )( ) 

where,   ,  are the size and the thickness of the box column,  is the maximum height of attached beams 

  is an adjustment factor 

 

- H column 
 
 

 

 

 

 

 

 

 

The volume is calculated as, = ( )( )( ) = , = ( )( )( ) 

where,   ,  are the size and the thickness of the web of the H-column,  is the maximum height of attached beams 

  is an adjustment factor 
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From global node displacement to element node displacement 

Transformation from the global node displacement to the element node displacement is, 

n

P
y

x

u

u
u

T 2

1

        (2-10-26) 

The component of the transformation matrix, ][ PT , is discussed in Chapter 4 (Freedom Vector). 

 

Constitutive equation 

The constitutive equation of the external spring is; 
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u
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P
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       (2-10-27) 

where, 

PP
T

PP TkTK        (2-10-28) 

2.11 Ground Spring 
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Force-displacement relationship for the element 

The relationship between the displacement vector and force vector of the ground springs attached at the center 

of gravity of the foundation in Figure 2-11-1 is expressed as follows: 

 

Sway and rocking in X-direction 

0 0
0 0

xG Hx xG Hx xG

yG Ry yG Ry yG

P K u C u
M K C

    (2-11-1) 

Sway and rocking in Y-direction 

0 0
0 0

yG Hy yG Hy yG

xG Rx xG Rx xG

P K u C u
M K C

    (2-11-2) 

Therefore 

Figure 2-11-1 Element model for ground spring 
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0 0

0 0

xG Hx xG Hx xG

yG Hy yG Hy yG
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yG yG
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 (2-11-3) 

From global node displacement to element node displacement 
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u u
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       (2-11-4) 

The component of the transformation matrix, [ ]GT , is discussed in Chapter 4 (Freedom Vector). 

 

Constitutive equation 

The constitutive equation of the ground spring is; 

1 1 1

2 2 2
G G

n n n

P u u
P u u
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      (2-11-5) 

where, 

,T T
G G G G G G G GK T k T C T c T     (2-11-6) 
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3. Nonlinear Element Models 

 

Notation 

ta  : Area of rebar in the tension side of the section 

sA  : Total area of rebar in the section 

y  : Strength of rebar 

B  : Compression strength of concrete 

wy  : Strength of shear reinforcement 

D  : Depth of the section 

d   : Effective depth of the section.  

b  :  Width of the beam 

j  : Distance between the centers of stress in the section ( d8/7 ). 

eZ  : Section modulus including the slab effect. 

sE  : Young’s modulus of steel 

cE  : Young’s modulus of concrete 

The Young's modulus of concrete cE (MPa) is calculated from the value of concrete 

strength B (MPa) by the following formula: 
2 1/343.35 10 24 60c BE  

where  is the unit volume weight of concrete = 23 (kN/m3) 

n  : Ratio of Young’s modulus (= cs EE / ) 

tp  : Tensile reinforcement ratio 

wp  : Shear reinforcement ratio 

eI  : Moment of inertia of section considering the slab effect 

cM   : Crack moment 

yM  : Yield moment 

M/(QD)  : Shear span-to-depth ratio 

c   : Crack rotation of the beam end 

y  : Yield rotation of the beam end 

c   : Crack rotation of the nonlinear bending spring 

y  : Yield rotation of the nonlinear bending spring 

0k  : Initial stiffness 

yk  : Tangential stiffness at the yield point 

2yk  : Stiffness after the yield point in the nonlinear bending spring 
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3yk  : Stiffness after the ultimate point in the nonlinear shear spring 

y  : Stiffness degradation factor at the yield point 

cQ   : Crack shear force 

yQ  : Yield shear force 

uQ  : Ultimate shear force 

sx  : Distance between the corner springs in the Multi-spring model  

c   : Crack shear deformation 

y  : Yield shear deformation 

u  : Ultimate shear deformation 
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3.1.1 Beam 

3.1.1 RC Beam 

a) Section properties 

Area of section to calculate axial deformation 

 SEN aaantBSBDA 211      (3-1-1) 

where, 
 csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

Area of section to calculate shear deformation 

 BDAS         (3-1-2) 

Moment of inertia around the center of the section 
2233

2212
)(

12
gtDtBSDgBDtBSBDI e  

2
2 2

1 1 2 21 1 1
2E E E S
tn a D d g n a g d n a D g  (3-1-3) 

where, g is the center of beam section calculated by 
2

2 2 1 1/ 2 / 2 1 / 2E S

N

BD S B t D t n a d a D d a D t
g

A
  (3-1-4) 

d2 

d1 

Figure 3-1-1 RC Beam Section 

B : Width of beam,    
D : Height of beam, 
S : Effective width of slab,    
t : Thickness of slab 
d1 : Distance to the center of top main rebars, 
d2 : Distance to the center of bottom main rebars,  
a1 : Area of top main rebars, 
a2 : Area of bottom main rebars 
as : Area of rebars in slab 

a2 

a1 

as 

t 

D 

B 

S 

d1 

d2 
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b) Nonlinear bending spring 

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the anti-

symmetry loading in Figure 3-1-3. The initial stiffness of the nonlinear spring is supposed to be infinite, 

however, in numerical calculation, a large enough value is used for the stiffness. 

 

Figure 3-1-2 Element model for beam 
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Figure 3-1-3 Moment – rotation relationship at bending spring 
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Crack moment force  

For reinforced concrete elements, the crack moment, cM  is calculated as, 

gIZZM eeeBc /,56.0 111   when tension in top main rebars  (3-1-5) 

gDIZZM eeeBc /,56.0 222  when tension in bottom main rebars  (3-1-6) 

where,  

B  : Compression strength of concrete (N/mm2) 

21 , ee ZZ  : Section modulus  
 

Yield moment force 

The yield moment, yM  is calculated as, 

2/9.09.0 111 tDadDaM ySyy   when tension in top main rebars (3-1-7) 

222 9.0 dDaM yy     when tension in bottom main rebars (3-1-8) 

where,  

y  : Strength of rebar (N/mm2) 

 

Yield rotation 

The tangential stiffness at the yield point, yk , is obtained from the following equation,: 

l
IEkkk ec

yy
6, 00        (3-1-9) 

where,  

y  is the stiffness degradation factor at the yield point, which is obtained from the following 

empirical formulas: 

2/,//043.063.1043.0 2 DaDdDanpty   (3-1-10) 

2/,//159.00836.0 2 DaDdDay    (3-1-11) 

where, 

tp  : Tensile reinforcement ratio 

BDaap St /1   (when tension in top main rebars) 

    BDap st /   (when tension in bottom main rebars)
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  a/D  : -to-depth ratio (= )2/( Dl ) 

  d : Effective depth 

1dDd    (when tension in top main rebars) 

    2dDd    (when tension in bottom main rebars) 
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y  is modified in case of tension in top main rebars as 

  
e

e
yy I

I 0'       (3-1-12) 

where 
12

3

0
BDIe  : the moment of inertia of square section without slab 

 

The yield rotation of the nonlinear bending beam, y , is then obtained from, 

0

11
k

M y

y
y       (3-1-13) 

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is 

0k
M y        (3-1-14) 

 

Crack rotation 

From Figure 3-1-2, the crack rotation of the nonlinear bending beam, c , is supposed to be zero value, 

however, in STERA_3D program, it is assumed as, 

yc 001.0        (3-1-15) 
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Effective width of slab 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

In general, effective width of slab for the flexural behavior of a beam is assumed as,  

DLS bb 1.0        (3-1-16) 

where, bL  :  Length of beam 

  D  :  Height of beam 

However, recent studies suggest the contribution of full length of slab to the flexural capacity, yM , of a 

beam. Therefore, STERA3D adopts two types of effective widths: 

1) For calculating section are and moment of inertia 

DLS bb 1.0  

2) For calculating the yield moment, yM , in Equation (3-1-8), 

ssb LS         (3-1-17) 

where, sL  :  Length of span 

  s  :  Effective slab ratio 5.0~1.0 , the default value is 0.1. 

 

 

  

 

 

Figure 3-1-4 Effective slab area for flexural capacity of beam 
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Hysteresis model 

To consider the difference of the flexural capacity between positive and negative side of the beam, a 

degrading tri-linear slip model is developed based on the Takeda Model for the hysteresis model of the 

bending springs of the beam. 

 

 

The strength degradation under cyclic loading is considered by elongating the target displacement, rk , to 

be m'  as shown in the following Figure: 

 

 

 

 

   

Figure 3-1-5 Degrading Tri-linear Slip Model 
( =0.5, =0.0 and =0.001 as default values) 

(3-1-18) 
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Relationship between curvature and rotation 

 

 

 

 

 

 

 

 

 

 

Let’s think about the relationship between curvature and rotation at the end of a beam. 

In the above loading condition, the relationship between moment and rotation is 

l
EIM 6

       (3-1-20) 

On the other hand, the relationship between moment and curvature is 

EI
M

        (3-1-21) 

Therefore, 

l
6

        (3-1-22) 

Assuming the neutral axis is in the middle of the section, the relationship between curvature and compression 

strain at the section end is 

2/D
c        (3-1-23) 

 

 
 

 
 

 
 

 

 

 

 

 

 
 

Figure 3-1-6 Introducing strength degradation ( =0.0 as default value) 

(3-1-19) 
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Figure 3-1-7 Rotation angle and curvature at beam ends 
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Therefore, the relationship between rotation and compressive strain is 

cD
ll

36
       (3-1-24) 

Assuming 
9
lD , then 

c3         (3-1-25) 

 

If c  reaches 0.003,  is around 0.01 (=1/100).  

It corresponds to the yielding rotation of a beam. 
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c) Nonlinear shear spring 

Hysteresis model of nonlinear shear spring is defined as the shear force – shear rotation relationship using an 

origin-oriented poly-linear model. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 

jbp
QDM

p
Q wyw

Bt
y 85.0

12.0)/(
)18(053.0 23.0

   (3-1-26) 

where, 

 tp  : Tensile reinforcement ratio 

B  : Compression strength of concrete 

wp  : Shear reinforcement ratio 

wy  : Strength of shear reinforcement 

j  : Distance between the centers of stress in the section ( d8/7 ). 
 

Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q        (3-1-27) 

 

 

 

 
 

 

 

 
 

Figure 3-1-8 Force–deformation relationship of shear spring 
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Ultimate shear force 

The ultimate shear force is, uQ , is assumed as,  

3u y y u yQ Q k s s       (3-1-28) 

NOTE) 

In STERA_3D, the stiffness after yielding is temporary assumed to be positive to avoid instability in 

numerical analysis.  

 

Crack shear deformation 

The crack shear deformation is obtained as, 

c cs l ,   
GA
Qc

c       (3-1-29) 

Yield shear displacement 
The yield shear deformation is assumed as, 

y ys l ,  
250
1

y       (3-1-30) 

Ultimate shear displacement 
The ultimate shear deformation is assumed as, 

u us l ,  
100

1
u       (3-1-31) 

 

 

 

 
 

 

 

 

 

 

 

Figure 3-1-9 Stiffness after yielding 
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d) Modification of initial stiffness of nonlinear springs 

 

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to 

represent rigid condition. This large stiffness may cause an error for estimating the force from the 

displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring 

to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic 

element so that the total initial stiffness of the beam element does not change from the original one. This idea 

is proposed by K-N Li (2004) for MS model. 
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Figure 3-1-10 Modification of moment – rotation relationship 
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The idea is realized using flexibility reduction factors, 1,1 21 , in the relationship between the 

displacement vector and force vector of the elastic element in Equation (2-1-1) as, 

x
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    (3-1-32) 

It must be 
yy EI

l
EI
l

6
'

3
'

1  or 5.01  and. 
yy EI

l
EI
l

6
'

3
'

2  or 5.02 . 

 

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the 
parameters, 21 , pp  to increase the initial flexibility. 

yB

yA

yB

yA

M
M

EIp
EIp

'
'

0
0

2

1      (3-1-33) 

When 0,0 21 pp , it represents the infinite stiffness for rigid condition. Accordingly, the crack and 

yield rotation will be modified as, 

EI
M

p c
c 1
* , 

0
1

* 1
k

M y

y
y      (3-1-34) 

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is 

0
1 k

M y        (3-1-35) 

Making the modified flexibility matrix to be identical to the original one, 
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 (3-1-36) 

This gives the flexivility reduction factors as: 

2211 '
31,

'
31 p

l
p

l
     (3-1-37) 

From the conditions 5.01  and 5.02 ,  

6
',

6
'

21
lplp        (3-1-38) 

K-N Li (2004) calls these parameters, 21 , pp , as “plastic zones” and recommends to be 
10

'
21

lpp . 

Them the reduction factors will be 7.021 . 
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e) Modification of stiffness degradation factor at the yield point 
(The following modification of the stiffness degradation factor, y , is suggested by Prof. Okano at Chiba 
University.) 
 
From Equations (3-1-32) and (3-1-34), the yield rotation of the member y under anti-symmetric loading 

condition, yBA MMM ,  is calculated as, 

000

11112
k

M
k

M
k

M y

y

y

y

y
y    (3-1-39) 

where 21 .  

 
The yield rotation y  in Equation (3-1-39) is different from the formula in Figure 3-1-10 since the factor 

 is multiplied to only diagonal elements of flexural matrix in Equation (3-1-32). 

 

The stiffness degradation factor is then obtained as, 

 11
'

1

yy

      (3-1-40) 

To realize the designated value of stiffness degradation factor, y  should be modified as, 

 1
'

11
y

y       (3-1-41) 

For example, to realize the stiffness degradation factor ,4.0'y assuming 7.0 , the modified y is 

 357.07.01
4.0

11y  

 

This modification is done automatically in STERA_3D.  
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f) Modification of considering rigid zone ratio 

A beam-column connection can be idealized as a rigid zone. In case of a beam element, the default length of 

the rigid zone is set to be a half of the column width, and the nonlinear bending spring of the beam element 

is arranged at the position of the column face. 

 

On the other hand, if elastic deformation of the connection is considered by reducing the length of rigid zone, 

the position of the nonlinear bending spring will be inside the connection area. In this case, when the 

nonlinear bending spring is yielding, the moment value at the position of the column face is smaller than the 

yield moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To make the moment at the column face to be the same as yield moment, the yield moment of the nonlinear 

bending spring is increased as, 

l
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)1(2/'

     (3-1-42) 

For example, when 75.0,30,540 cmdcml A ,  

027.1540/30)25.0(21      (3-1-43) 

l  
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Ad  Bd  

'l  
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Ad  Bd  
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yM  'yM  

Column Column 

Figure 3-1-11 Reduction of rigid zone and modification of yield moment 
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3.1.2 Steel Beam 

a) Section properties 
 

 

 

 

 

 

 

 

  

 

 

 

 

Area of section to calculate axial deformation 

 wffN ttHBtA 22       (3-1-44) 
Area of section to calculate shear deformation (    ) 

 wfS ttHA 2        (3-1-45) 

Moment of inertia around the center of the section 

 
12

)2)(( 33
fw

y

tHtBBH
I  : along strong axis   (3-1-46) 

 
12

)2(2 33
wff

z

ttHBt
I  : along weak axis   (3-1-47) 

Moment of inertia for torsion 

 x y zI I I        (3-1-48) 

 

Figure 3-1-12 Steel Beam Section 
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b) Nonlinear bending spring 

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the anti-

symmetry loading as shown in Figure 3-1-14. The initial stiffness of the nonlinear spring is supposed to be 

infinite, however, in numerical calculation, a large enough value is used for the stiffness. 

 

 

 

Figure 3-1-13 Element model for beam 
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Figure 3-1-14 Moment – rotation relationship at bending spring 
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Yield moment force 

The yield moment, yM  is calculated as, 

yfwffy tHttHBtM 2)2(
4
1)(     (3-1-49) 

where,  

y  : Strength of steel (N/mm2) 

 

 

 

 

 

 

 

 

 

Yield rotation 

From Figure 3-1-14, the yield rotation of the nonlinear bending beam, y , is supposed to be zero value, 

however, in STERA_3D program, it is assumed as, 

yy 001.0=        (3-1-50) 

where 

 
l
EIkkM yy

6,/ 00  

 

Hysteresis model 

A bi-linear model is assumed for the hysteresis model. 
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Figure 3-1-15 

Figure 3-1-16 Hysteresis of steel 
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c) Modification of initial stiffness of nonlinear springs 

 

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to 

represent rigid condition. This large stiffness may cause an error for estimating the force from the 

displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring 

to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic 

element so that the total initial stiffness of the beam element does not change from the original one. This idea 

is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also. 

 

 
 

 

 

Elastic element Nonlinear bending spring 

Figure 3-1-17 Modification of moment – rotation relationship 
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The idea is realized using flexibility reduction factors, 1,1 21 , in the relationship between the 

displacement vector and force vector of the elastic element in Equation (2-1-1) as, 

x

yB

yA

yy
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x

yB
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N
M
M
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l

EI
l
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l
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l
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l
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'00
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'
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1

    (3-1-51) 

It must be 
yy EI

l
EI
l

6
'

3
'

1  or 5.01  and. 
yy EI

l
EI
l

6
'

3
'

2  or 5.02 . 

 

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the 
parameters, 21 , pp  to increase the initial flexibility. 

yB

yA

yB

yA

M
M

EIp
EIp

'
'

0
0

2

1      (3-1-52) 

When 0,0 21 pp , it represents the infinite stiffness for rigid condition. Accordingly, the yield rotation 

will be modified as, 

EI
M

p y
y 1
*        (3-1-53) 

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is 

0
1 k

M y        (3-1-54) 

Making the modified flexibility matrix to be identical to the original one, 
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 (3-1-55) 

This gives the flexivility reduction factors as: 

2211 '
31,

'
31 p

l
p

l
     (3-1-56) 

From the conditions 5.01  and 5.02 ,  

6
',

6
'

21
lplp        (3-1-57) 

K-N Li (2004) calls these parameters, 21 , pp , as “plastic zones” and recommends to be 
10

'
21

lpp . 

Then, the reduction factors will be 7.021 . 
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3.1.3 SRC Beam 

a) Section properties 

 
Area of section to calculate axial deformation 

)1 21 STSEN aaaantBSBDA    (3-1-58) 

where, 
 csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

 wfwST thttba 112  :Area of steel 

Area of section to calculate shear deformation 
 BDAS        (3-1-59) 

Moment of inertia around the center of the section 
2233

2212
)(

12
gtDtBSDgBDtBSBDI e  

2
2

22
2

11 2
111 gtDangdDangdan SEEE   

12
)2)((

1
3

11
3

11 fw
E

thtbhb
n       (3-1-60) 
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d2 d2

d1 

Figure 3-1-18 SRC Beam Section 

B : Width of beam,    
D : Height of beam, 
S : Effective width of slab,    
t : Thickness of slab 
d1 : Distance to the center of top main rebars, 
d2 : Distance to the center of bottom main rebars,  
a1 : Area of top main rebars, 
a2 : Area of bottom main rebars 
as : Area of rebars in slab 
b1 : Width of steel 
h1 : Height of steel 
tw : Thickness of web 
tf : Thickness of flange 

a2 

a1 

as

b1 

h1 tw 

tf 

118



where, g is the center of beam section calculated by 

N

STSE

A
DatDadDadantDtBSBDg 2/2/12/)(2/ 2211

2

  

(3-1-61) 

b) Nonlinear bending spring 

Hysteresis model of a nonlinear bending spring is the same as RC beam. 

Crack moment force  
For reinforced concrete elements, the crack moment, cM  is calculated as, 

gIZZM eeeBc /,56.0 111   when tension in top main rebars (3-1-62) 

gDIZZM eeeBc /,56.0 222  when tension in bottom main rebars (3-1-63)  

where,  

B  : Compression strength of concrete (N/mm2) 

21 , ee ZZ  : Section modulus  
 

Yield moment force 

The yield moment, yM  is calculated as, 

SyRCyy MMM ,,2,1       (3-1-64)  

where 

RCyM ,2,1  : Yield moment of reinforced concrete     (3-1-65)  

2/9.09.0 11,1 tDadDaM ySyRCy  when tension in top main rebars 

22,2 9.0 dDaM yRCy    when tension in bottom main rebars 
where,  

y  : Strength of rebar (N/mm2) 

SyfwffSy thtthtbM ,
2

111, )2(
4
1)(  : Yield moment of steel  (3-1-66)  

where,  
Sy ,  : Strength of steel (N/mm2) 
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3.1.4 Direct Beam 
 

a) Model description 

The direct beam is defined as a rigid beam with nonlinear bending springs and a nonlinear shear spring 

 

 

 

 

 

 

 

 

 

 

Figure 3-1-19 

 
The displacement vector of the beam element is obtained as the sum of the two displacement vectors. 
 

' '
' '
yA yA y

yB yB y

      (3-1-67)  

 
where 'yA , 'yB  are the rotational deformations of nonlinear bending spring, and y  is the rotational 
deformation of the nonlinear shear spring. 
 
b) Nonlinear bending spring 
The force-deformation relationships of the bending springs are 

' ' , ' 'yA yA yB yBM f M f     (3-1-68) 

 
Incremental form is 
 

 
' ' ' '0
' ' ' '0
yA mA yA yA yAmA

m
yB mB yB yB yBmB

M k k
k

M k k
 (3-1-69) 

That is, 
 

 

1 0
' ' '0
' ' '010

yA yA yAmA mA

yB yB yBmB

mB

M Mk f
M Mf

k

  (3-1-70) 

 where 
1 1,mA mB
mA mB

f f
k k

 

A B 
y  

yBM '  yAM '  

3 1 19

 

y  
'yA  

'yB  
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c) Nonlinear shear spring 

The force-deformation relationship of the shear spring is 

 

 

 

 

 

 

 

 

 

 

Figure 3-1-20 
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Incremental form is 

'' ' 1 1
'' ' '
yAyA yB

z
yB

MM M
Q

Ml l l
    (3-1-71) 

z s zQ k s        (3-1-72) 

'
z

y
s
l

       (3-1-73) 

If we consider the rotation angles in both ends, 

2 2

2 2

1 11 1 1
' '' '1 1 1' ' '
' '1 1 1 1 1' '

' ' ' ' '
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y yA yAs ss
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Mf f
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Mf f k l 2'

   

(3-1-74) 
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d) Force-deformation relationship of the direct beam 

Therefore, the incremental form of the deformation of the direct beam is 
 

' ' '0
' ' '0

' '
' '

yA yA y yA yAmA s s

yB yB y yB yBmB s s

yA yAmA s s
B

yB yBs mB s

M Mf f f
M Mf f f

M Mf f f
f

M Mf f f

 (3-1-75) 

 
][ Bf  is the flexural stiffness matrix of the beam element.  

 

By taking the inverse matrix of ][ Bf , the constitutive equation of the beam element is obtained as, 

1' 0
' 0
yA yA yAmA

p
yB yB yBmB

M f
k

M f
 

1' ' '
' ' '
yA yA yA

B B
yB yB yB

M
f k

M
     (3-1-76) 

where, ][ Bk  is the stiffness matrix of the beam element. 
 
If we introduce an elastic axial spring in the middle, 

 

 

 

 

Figure 3-1-21 
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  (3-1-77) 

 
' ' '
' ' '
' ' '

yA mA s s yA yA

yB s mB s yB B yB

x n x x

f f f M M
f f f M f M

f N N
  (3-1-78) 

 
][ Bf   is the flexural stiffness matrix of the beam element. By taking the inverse matrix of ][ Bf  , the 

constitutive equation of the beam element is obtained as, 

1
' ' '
' ' '
' ' '

yA yA yA

yB B yB B yB

x x x

M
M f k
N

     (3-1-79) 

'x  
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The nonlinear spring displacement vector is obtained from the element face displacement as, 

0 0 '
0 0 '

0 '

yA mA yA

yB mB yB

s s x

f M
f M

s f f N
     (3-1-80) 

 
We assume the deformation in the out-of-plane direction to be elastic as 

 

 

 

 

Figure 3-1-22 
 
The displacement vector of the beam element is obtained as the sum of the two displacement vectors. 
 

' '
' '
zA zA z

zB zB z

       (3-1-81) 

 
Incremental form is 
 

0 0 0
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 (3-1-82) 

 

0[ ]Bf  is the flexural stiffness matrix of the beam element.  

Combining with the normal direction, 
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         (3-1-83) 

 
e)  Algorithm to calculate the force-deformation of the viscoelastic damper (Kelvin-Voigt model) 
 
The shear spring can be a viscoelastic damper.  

This figure shows the Voigt (or Kelvin-Voigt) model with an elastic spring with stiffness, K , and a dashpot 

with damping coefficient, C. The spontaneous stiffness of the nonlinear connection spring is represented as 

dK . This model is the same as the viscoelastic damper (Kelvin-Voigt model) with a nonlinear spring in 

'zAM  'zBM  

'zA  'zB  z  
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Chapter 3.7 “Passive Damper” (4). 

 

 

 

 

 

 

 

 

 

Figure 3-1-23 

 

The force of the friction damper, kQ , is obtained as, 

 k k d kQ t Q t t K d       

or ( )k d k d ij cQ K d K d d      (3-1-84) 

 

where,  kd : relative displacement of the connection spring 

  cd : relative displacement of the dashpot and spring 

ijd : relative displacement between i-j nodes 

 

The force of the dashpot and spring is, 

 

 

 

 

 

 

 

 

 Figure 3-1-24 Bi-linear model  

 2c c c sQ Kd C d Q       (3-1-85) 

2
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 2 ( ) ( ) ( )c c c c s
CQ K d t Kd t t Q t t Q

t
   (3-1-86) 

When the time interval t is small enough, the velocity at time t can be expressed as, 

 
( )( ) c

c
d td t

t
       (3-1-87) 

 ( ) ( ) ( )c c cd t d t d t t       (3-1-88) 

From Equations (3-1-84)  

 ( )k d k d ij cQ K d K d d      (3-1-89) 

From the condition k cQ Q  and Equation (3-1-86) 

 2( ) ( ) ( ) ( )d ij c c c c s
CK d d K d t Kd t t Q t t Q

t
 

2

( ) ( ) ( )
( ) c d ij c s

c

d

Q t t K d t Kd t t Q
d t CK K

t

   (3-1-90) 

Substituting into Equation (3-1-89) 
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1 2
2 2
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k d ij d d ij d

d d
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 1 2
2 2
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 (3-1-91) 

 

 

On the other hand, from Equation (3-1-71), 
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01
, 1 1 1 1

01
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R R l l k l l k l k l
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         (3-1-92) 

By setting ,k ijQ Q d , 
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       (3-1-93) 

From Equation (3-1-90) 

2 2 2

2 1

( ) ( ) ( ) ( )( ) ( )( )

1

c d ij c s d ijc c s
c

d d d

Q t t K d t Kd t t Q K d tQ t t Kd t t Qd t C C CK K K K K K
t t t

          
         (3-1-94) 

k cd d         (3-1-95) 

1
1

yA A

yB B

l
l

      (3-1-96) 

Before the relief point of the dashpot, Equation (3-1-91) will be obtained by changing 2 1, 0sC C Q  

as 

 1 2
1 1

( ) ( )1 ,d c c

d d

K Q t t Kd t t
C CK K K K

t t

  (3-1-97) 

When the velocity of the dashpot is over the negative relief point, Equation (3-1-91) will be obtained by 

changing s sQ Q  as 

 1 2
2 2

( ) ( )1 ,d c c s

d d

K Q t t Kd t t Q
C CK K K K

t t

 (3-1-98) 
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The algorithm to obtain the shear force Q is as follows: 

1) Evaluate ijd  from Equation (3-1-93) 

2) Evaluate cd  from Equation (3-1-94) 

3) Evaluate ( ) ( ) ( )c c cd t d t t d t  and ( ) ( ) ( )ij ij ijd t d t t d t  
4) Evaluate shear force from the bilinear hysteresis model of the friction damper (including elastic element). 
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In case there is no connection spring, 

 

 

 

 

 

 

 

 

Figure 3-1-25 
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    (3-1-100) 

By setting cd  
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   (3-1-101) 

Before the relief point of the dashpot, Equation (3-1-101) will be obtained by changing 2 1, 0sC C Q  

as 
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( ) ( )
( )

1
1

A
c c

B
c

R Kd t t Q t t
d t

l CR K
l t

    (3-1-102) 

When the velocity of the dashpot is over the negative relief point, Equation (3-1-102) will be obtained by 

changing s sQ Q  as 

Node i Node j 

Qc, d  

Qij, dij 
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2

( ) ( )
( )

1
1

A
c c s

B
c

R Kd t t Q t t Q
d t

l CR K
l t

   (3-1-103) 

The algorithm to obtain the force Q is as follows: 

1) Evaluate cd  from Equation (3-1-101) 

2) Evaluate ( ) ( ) ( )c c cd t d t t d t  

3) Evaluate force from c c c sQ Kd Cd Q  
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f)  Algorithm to calculate the force-deformation of the viscoelastic damper (4-element model) 
 
The shear spring can be a viscoelastic damper.  
This figure shows the 4-element model with two non-linear dashpot elements 1 2,C C  and two non-linear 

spring elements stiffness, 1 2,K K . This model is the same as the viscoelastic damper (4-element model) with 

a nonlinear spring in Chapter 3.7 “Passive Damper” (5). 
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( ) = ( ) + ( ) + ( ) ( )  = ( ) + + + ( ) 

= ( ) + + + + ( ) ( ) + ( ) 

= + + + + ( ) + + ( ) ( ) ( ) 

= + + + ( ) + ( ) ( ) ( ) 

where  = +  

Thus, ( ) =  = + +  = ( ) ( ) ( ) + ( ) 

( ) = [ ] [ ] 11 =  

Solving for  

= [ ] +
[ ] 11 +  

 

The algorithm to obtain the force Q is as follows: 

1) Evaluate =  from Equation (3-1-106) 

2) Evaluate  from Equation (3-1-104) 

3) Evaluate  from Equation (3-1-105) 

(3-1-106) 
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Appendix 3.1.2:   
 
A-1. Hysteresis of Degrading Trilinear Slip Model  
 
 
In OPTION menu in Beam Editor, you can control the shape of hysteresis loop. 

 
sR : Effective Slab Ratio 

As described in Eq. (3-1-8), when tension in slab side, the yield moment of beam , 1yM , is  

2/9.09.0 221 tDadDaM ysyy   

where, sa is the area of rebars in effective width of slab, bS , which is defined as Eq.(3-1-17), 
  ssb LS  

s  ( sR  in the menu) is the effective slab ratio , the default value is 0.1. 
 

Depending on the effective slab ratio sR , the yiled moment yM and the yield rotaion yR will change together 

as shown in the Figure below, since the tangential stiffness at the yield point, yK , is assumed to be the 
same.  

 

uR  : Ultimate rotation angle to define the maximum moment before degradation. The default value is 1/50. 

pK  : The stiffness after the yield rotation angle, yR .  

uK  : The stiffness after the ultimate rotation angle, uR .  

It can be the negative value to consider strength degradation, however, the default value of the ratio yu KK / is 
1/1000 without degradation.
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1R : stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation) 

2R : slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip). 

3R : strength degrading ratio in the trilinear hysteresis is 0.0. 

 
 Those parameters control the shape of hysteresis loop as descrived in Eqs. (3-1-18) and (3-1-19). That is, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
More detail rule in the hysteresis loop is described in the following sections:
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1. Elastic range 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. From crack point to yield point 
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unloading point 

(drm(2), frm(2))  
unloading point 

s0(1) 

sc 

sy 

s0 

Initial stiffness, s0, is calculated from  
s0(1) = fc(1) / dc(1) 

s0(2) 

towards the maximum point of the other side 
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3. Loading on the primary curve after yielding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If the displacement is over the degrading point, 
intersection of the LINE1 (degrading line) 
and LINE2 (unloading line) will be the target 
point. 

ssd 

(drm,frm) 

su 

(du,fu) 

xdm 

fdm 
(du,fu) 

If the displacement is less than the degrading point (du, fu),  
the unloading point will the target point (drm, frm) 

If the force is lower than 0.1fy, intersection of 
the LINE1 (degrading line) and LINE2 (lower 
boundary) will be the target point. 
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Lower boundary 
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The stiffness of unloading. ssd, will be calculated from 
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d
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y

y
, where is the parameter to control the stiffness 

degradation depending on the ductility factor, (drm/dy). The default value of is 0.5 
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4. Crossing zero force line 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target point of the other side, drm(2), will be increased 
according to the ductility factor, (drm(1)/dy(1)), as follows: 

)2(
)1(
)1(1)2( drm

dy
drmdrm  

where  is the parameter to control the strength degradation. 
The default value is  (no degradation). 
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5. Calculation of slip point 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After crossing zero force line, the stiffness will be 
calculated as: 

drm
dy

xddrm
frmssl

0)2(
)2(

 

where  is the parameter to control the slip ratio. For the 
default value ( =0.0), it will be no slip and towards the 
maximum point. 

The stiffness will change at the intersection of 
LINE1 and LINE2. After the intersection point, 
(dsl, fsl), Level 8 will be towards the maximum 
point. 

5 

LINE1 

LINE2 

Stiffness unloading from Level 6 (Level 7) and 
stiffness unloading from Level 8 (Level 10) is the 
same as the unloading stiffness, ssd ( Level 5). 

6 

10 

srm 

5 

ssd 

ssd 

8 

7 
ssd 

ssd 

6 

8 

6 
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11 

4 

After crossing zero force line from Lavel 7, Level 9 will be towards the 
maximum point. Stiffness unloading from Level 9 (Level 11) is the same as  
the stiffness of ssd (Level 5). 
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3.2 Column 

3.2.1 RC Column 

a) Section properties 

 

Area of section to calculate axial deformation 

 cEN aaanBDA 211      (3-2-1) 
Area of section to calculate shear deformation 
 2.1,/BDAS       (3-2-2) 

Moment of inertia around the center of the section 

 
2

11

3

2
1

12
dBaanDBI cEy     (3-2-3) 

2

22

3

2
1

12
dDaanBDI cEx     (3-2-4) 

B 

d2 

Figure 3-2-1 RC Column Section 

B : Width of column,    
D : Height of column, 
d1 : Distance to the center of x-direction main rebars, 
d2 : Distance to the center of y-direction main rebars,  
a1 : Area of x-side main rebars, 
a2 : Area of y-side main rebars, 
ac : Area of corner main rebars 

D 

d1 

a1 

a2 

x 

y 

ac 
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b) Nonlinear bending spring 

 
Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the 

anti-symmetry loading in Figure 3-2-2. The initial stiffness of the nonlinear spring is supposed to be infinite, 

however, in numerical calculation, a large enough value is used for the stiffness. 

 
The crack moment, cM  is calculated as, 

6
56.0 NDZM eBc       (3-2-5) 

where,  

B  : Compression strength of concrete (N/mm2) 

eZ  : Section modulus  
 N  : Axial load 

yM  

cM  

M  M  

 c  y  

M  

 

= + 

Elastic element Nonlinear bending spring 

l
EIk 6

0  

0k  0k  nk  

Figure 3-2-2 Moment – rotation relationship at bending spring 
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Moment distribution 
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The yield moment, yM  is calculated from the following formula under the axial load, N  

 
)0( bNNif   

B
yty bD

NNDDaM 15.08.0     (3-2-6) 

)( maxNNNif b   

b
Byty NN

NN
bDDaM

max

max212.08.0    (3-2-7) 

where, bN  is the balance axial force,  

Bb bDN 4.0        (3-2-8) 

and maxN  is the maximum axial force, 

 ysB AbDNmax       (3-2-9) 

 

The tangential stiffness at the yield point, yk , is obtained from the following equation, 

l
EIKKk yy

6
00       (3-2-10) 

where,  

y  is the stiffness degradation factor at the yield point, which is obtained from the following 

empirical formulas: 

2
00.043 1.64 0.043 / 0.325 / , 2 /y tnp a D d D a D  (3-2-11) 

2
00.0836 0.159 / 0.169 / , 1 / 2y a D d D a D  (3-2-12) 

where, 

tp  : Tensile reinforcement ratio 
BDaap ct 2/1   (when tension in x-main rebars) 

    BDaap ct 2/2  (when tension in y-main rebars) 

  a/D  : -to-depth ratio (= )2/( Dl ) 

  d : effective depth 

d = D-d1   (when tension in bottom main rebars) 

    d = D-d2   (when tension in upper main rebars) 

  0
B

N
bD

 : Axial load ratio 
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The yield rotation of the nonlinear bending beam, y , is then obtained from, 

0

11
K
M y

y
y       (3-2-13) 

 

Reference: 

AIJ Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan, 

2018 (in Japanese) 
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Case 1: In the case that bending springs in x and y directions are independently defined 

 

The rotational displacement vector of the nonlinear bending spring is defined independently, 

'yA yA yAf M , 'xA xA xAf M    at end A     (3-2-14) 

'yB yB yBf M , 'xB xB xBf M    at end B     (3-2-15) 

where, yAf , xAf , yBf , and xBf  are the flexural stiffness of nonlinear bending springs at both ends of 
the element, and 

1yA yAf k , 1xA xAf k , 1yB yBf k , 1xB xBf k  (3-2-16) 

 

The rotational displacement vector of the nonlinear bending springs will be 

zB

xB

yB

zA

xA

yA

xB

yB

xA

yA

zB

xB

yB

zA

xA

yA

pB

pA

zB

xB

yB

zA

xA

yA

N
M
M
N
M
M

f
f

f
f
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'
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 (3-2-17) 

X-Z plane 

Figure 3-2-3 Element model for column 
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The hysteresis model for M  relationship is the degrading tri-linear slip model as used for the 

hysteresis model of the bending springs of the RC beam. 

 

M  

 

yM  

cM  

y
p

y

M
k  

m

y

xm

m
s

M
k  

m

y

y

y
r

M
k  

Figure 3-2-4 Degrading Tri-linear Slip Model 
( =0.5, =0.0 and =0.001 as default values) 

(3-2-18) 

M  

 rk  
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Case 2: In the case that nonlinear interaction between moment and axial components is considered 

 

To consider nonlinear interaction among zyx NMM , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure 

3-2-4. 

 

Displacement of the i-th nonlinear axial spring is, 

yixizi xy       (3-2-19) 

Equilibrium condition in the nonlinear section is, 

i
yixizi

i
iiz

i
iyixizi

i
iiix

i
iyixizi

i
iiiy

xykkN

yxykykM

xxykxkM

)('

)('

)('

   (3-2-20) 

In a matrix form 

z

x

y

p

z

x

y

i
i

i
ii

i
ii

i
ii

i
iii

i
ii

z

x

y

k

ksym

ykyk

xkyxkxk

N
M
M

.'
'
'

2

2

  (3-2-21) 

 

A 

B 

yAyAM ,  

yByBM ,  

xBxBM ,  

xAxAM ,  

zBzBN ,  

zAzAN ,  

Figure 3-2-5 Nonlinear bending springs 
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Therefore 

z

x

y

p

z

x

y

p

z

x

y

N
M
M

f
N
M
M

k
'
'
'

'
'
'

1      (3-2-22) 

For both ends 
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c) Nonlinear vertical springs 

 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-2-5. This model is called “Multi-spring model” proposed by S. S. Lai, G. T. 

Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner 

areas have steel springs and concrete springs and the center area has one concrete spring.  

The strength and the location of nonlinear springs are obtained from the equilibrium condition under 

the balance axial force, bN . 

 

 

 

Strength of steel spring 

The strength of the steel spring is one-forth of total strength of rebars in the section, i.e., 

4
ys

ys

A
f        (3-2-24) 

where,  

sA  : Total area of rebar in the section 

y   Strength of rebar 

 

 

Figure 3-2-6 Nonlinear vertical springs 

Concrete spring 
Steel spring 

x 

y y 

x 

yc d  

yc f  

ys f  

ys d  

(a) Original column section 

 (d) Hysteresis of concrete spring 

(tension) 

(compression) 

(tension) 

(compression) 

(b) Multi-spring model 

(c) Hysteresis of steel spring 

2A  
1A  1 2 

3 4 

5 
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Strength of concrete spring 

As shown in Figure 3-2-6, the strength of the corner concrete spring is obtained from the equilibrium 

condition in the vertical direction under the balance axial force, Bb bDN 4.0 , that is, 

B
b

yc bD
N

f 2.0
21       (3-2-25) 

Therefore, the area of the corner concrete, 1A , is, 

B

yc f
A

85.01        (3-2-26) 

 

The area of the center concrete, 2A , is the rest of the area of the section, 

04 12 AbDA       (3-2-27) 

The strength of the center concrete spring is then obtained as, 

22 85.0 Akf Byc       (3-2-28) 

where, k  is the confined effect 3.1k  of the concrete.  

 

Location of vertical springs 
The distance between the corner springs, sx , is obtained from the equilibrium condition regarding the 

moment force in Figure 3-2-7, 

byssycyssy NfxffxM 5.022 1     (3-2-29) 

Therefore, 

bys

y
s Nf

M
x

5.02       (3-2-30) 

Note that yM  is calculated from Equation (3-2-6) for the balance axial force, bN N . 
 

yM  

bN  

Figure 3-2-7 Equilibrium condition in the column section 

x 

y 

1ycys ff  

1ycys ff  

1ys f  
1ys f  

sx  
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Example) 

 

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is 

compared between MS-model and theory using one column element. The column section is shown in the 

Figure below: 

 

 

Firstly, the strengths and locations of vertical springs are calculated as 

)/(4.2)/(45.321.1)(484.15 222 cmkNcmkNfcma Byyt  

)(24004.0 kNbDN Bb  )(6502max kNAbDN ysB  

)(30)(390)(1200)(2.251 21 cmxkNfkNfkNf sycycys  

In the range )0( bNN , the Multi-Spring model gives 

sysy xNfM 5.02  

which is plotted as the solid line in Figure 3-2-8. The results of Multi-Spring model give smaller values 

than theoretical results in the range 0 < N < Nb.  

 

N=1000kN 

F 

50cm 

300cm 

Figure 3-2-8  
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K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs 

instead of Equation (3-2-29), as follows: 

0

0

5.02 Nf
M

x
ys

y
s       (3-2-31) 

where, 0N  is the axial force from the dead loads and the live loads acting on the column ( bNN0 ), 

and 0yM  is the yield moment under the axial force 0N , that is: 

B
yty bD

N
DNDaM 0

00 15.08.0     (3-2-32) 

 

For the example column, assuming 0N  = 1000 (kN), 

)(8.35 cmxs  

 

The yield moment is plotted as the solid line in Figure 3-2-9. It improves the results of Multi-Spring model. 

Figure 3-2-9 Comparison of M-N relationship 

Under-estimate 

Theory 
Multi-Spring 

150



 
Figure 3-2-10 Comparison of M-N relationship 

Theory 
Multi-Spring 
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Yield displacement of vertical spring 

 

From the equilibrium condition under the axial force 0N  as shown in the above Figure, the yield 

displacement of the tension side steel spring, ys d , is obtained as follows: 

ycys

ys

sy
ys

ys
c

ys
ycys

c
c

sycys

ff
fN

x
d

fN
f

d
ff

f
d

xdd

22
2

1

2
2

0

0
      (3-2-33) 

The yield displacement of concrete spring, yc d , is assumed to be the same as that of the steel spring, 

ysyc dd        (3-2-34) 

 

Figure 3-2-11 Equilibrium condition under the axial force N0 

ys f2  

cf2  

0N  

y  ys d  

0yM  

sx  

cd  

ysyc dd  

ysyc ff  

cf  

cd  
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d) Nonlinear shear spring 

 

d-1) Force-deformation relationship 

 

There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs 

is the same as that in the beam element. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 

jbp
QDM

pQ wyw
Bt

y 0

23.0

1.085.0
12.0)/(

)18(053.0
  (3-2-35) 

where, 

 tp  : Tensile reinforcement ratio 

B  : Compression strength of concrete 

M/(QD)  : -to-depth ratio (= )2/( Dl ) 

wp  : Shear reinforcement ratio 

wy  : Strength of shear reinforcement 

0  : Axial stress of the column 

j  : Distance between the centers of stress in the section ( d8/7 ). 

Crack shear force 

The crack shear force is, cQ , is assumed as,  

0.3c yQ Q        (3-2-36) 

Ultimate shear force 

The ultimate shear force is, uQ , is assumed as,  

3u y y u yQ Q k s s       (3-2-37) 

 

yQ  

cQ  

cs  ys  

Q  

us  
0k GA l  

uQ  

s  

3yk  

00.001k  

Figure 3-2-12 Shear force - deformation relationship 
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Crack shear deformation 

The crack shear deformation is obtained as, 

c cs l ,   
GA
Qc

c       (3-2-38) 

Yield shear displacement 
The yield shear deformation is assumed as, 

y ys l ,  
250
1

y       (3-2-39) 

Ultimate shear displacement 
The ultimate shear deformation is assumed as, 

u us l ,  
100

1
u       (3-2-40) 

 

The poly-linear slip model (see Appendix) is adopted for the hysteresis of the shear spring. 

 
 

 

The parameters on the backbone curve can be changed in the Option Menu of Column element. The default 

values are given as follows: 

 

Q  

s  

Figure 3-2-13 Poly-linear slip model for shear spring 
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Example) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

jbp
QDM

pQ wyw
Bt

y 0

23.0

1.085.0
12.0)/(

)18(053.0
  (3-2-35) 

where, 

b = 600 (mm), j =0.8* d = 480 (mm) 

tp = 0.32 (%), B =240 (N/mm2), / (2 ) 3000 / (2 600) 2.5M QD l D  

100 /w wp a b x = 0.0042, wa = 2 D13 = 253 (mm2), x = 100 (mm) 

wy = 1.1(295)=324.5 (N/mm2), 0 = 1.388 (N/mm2) 

 yQ = 479.2 (kN) 

 

 

 

 

 

N=500kN 

F 

600mm 

3000mm 
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d-2) Shear spring model 1 
 

Case 1: In the case that shear springs in x and y directions are independently defined 

 

 
The force-deformation relationship of shear spring is 

0
0

x sx x

y sy y

Q k s
Q k s

       (3-2-41) 

 

x 

z 

y 

Figure 3-2-14 Nonlinear shear springs in column 
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yQ  

xs  
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d-3) Shear spring model 2 

 

Case 2: In the case that nonlinear interaction between shear and axial components is considered 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The force-deformation relationship of shear spring is 

x x

y sp y

z sz

Q s
Q k s
N

      (3-2-42) 

The stiffness matrix spk  is obtained by the Plastic Theory as explained in the Appendix (not 

implemented).

A 

B 

'yAM  

'yBM  

'xBM  

'xAM  

'zBN  

'zAN  

Figure 3-2-15 Nonlinear shear springs 

,x xQ s  

,y yQ s  

,z szN  
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e) Modification of initial stiffness of nonlinear springs 

 

The same modification can be done for the nonlinear springs of column element as described for those of 

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the 

elastic element as shown in the following figure: 
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Elastic element Nonlinear bending spring 
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Figure 3-2-16 Modification of moment – rotation relationship 
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p
AE

k0        (3-2-43) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 

plastic zone. When 0zp , it represents the infinite stiffness for rigid condition. 

 

From Equation (3-2-20), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the 

nonlinear MS section is, 
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 (3-2-44) 

 
Also, introducing the flexibility reduction factors, 0,0,0 210 , the flexibility matrix of 

the elastic element is, 
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     (3-2-45) 

Making the modified flexibility matrix to be identical to the original one, 
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         (3-2-46) 

Since 2
i i y

i
A x I , this gives the flexivility reduction factors as: 

2102211 '
11,

'
31,

'
31 zzzz pp

l
p

l
p

l
  (3-2-47) 

Adopting
10

'
21

lpp zz  as discussed for beam element, the reduction factors will be: 

7.021 ,  8.00       (3-2-48) 

 

159



References 

 

1) S. S. Lai, G. T. Will, and S. Otani (1984), “Model for Inelastic Biaxial Bending of Concrete Members,” 

Journal of Structural Division, ASCE, Vol. 110, ST1, 1984, pp.2563-2584. 

2) K-N. Li (1988), “Nonlinear Earthquake Response of Reinforced Concrete Space Frames,” the 

dissertation for the degree of Doctor in University of Tokyo (in Japanese), 1988.12. 

3) K-N. Li (2004), CANNY, Technical Manual. 

 

160



3.2.2 Steel Column 

a) Section properties 
 

 

 

 

 

 

 

 

 

 

 

 

 

Area of section to calculate axial deformation 

 NA  total area of section      (3-2-49) 
Area of section to calculate shear deformation 
 SA  (    )       (3-2-50) 

 

 

 

 

 

 

 

 

 

Moment of inertia around the center of the section 

1) H section 

 
12

)2)(( 33
fw tHtBBH

I  : along strong axis   (3-2-51) 

 
12

)2(2 33
wff ttHBt

I  : along weak axis   (3-2-52) 

2) Box section 

12
)2)(2( 3

21
3 tHtBBH

I      (3-2-53) 
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B : Width,  H : Height,  tw, tf, t1, t2, t: Thickness 
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Figure 3-2-17 Steel Column Section 

Figure 3-2-18 Area of section for shear 
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3) Circle section 

44 2
64

tDDI       (3-2-54) 

Moment of inertia for torsion 

1) H section 

 
3

)2(2 33
wff ttHBt

J      (3-2-55) 

4) Box section 

2
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2
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2
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2
121 )()(2

tttBHt
tHtBtt

J      (3-2-56) 

5) Circle section 

44

32
tDDJ       (3-2-57) 
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b) Nonlinear bending spring 

 

To consider nonlinear interaction among zyx NMM , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in the 

following Figure. 

 

Displacement of the i-th nonlinear axial spring is, 

yixizi xy       (3-2-58) 

Equilibrium condition in the nonlinear section is, 
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   (3-2-59) 

In a matrix form 
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Therefore 
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Figure 3-2-19 Nonlinear bending springs 
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For both ends 
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     (3-2-62) 

 

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the 

anti-symmetry loading as shown in Figure 3-2-20. The initial stiffness of the nonlinear spring is supposed 

to be infinite, however, in numerical calculation, a large enough value is used for the stiffness. 

 

Figure 3-2-20 Moment – rotation relationship at bending spring 
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Yield moment force (full plastic moment) 

1) I shape 
 

 

 

 

 

 

 

 

 

 

a) When the neutral axis is inside the web, i.e., yfwyw tHtAN )2-(=<  

ywyy tyMM 2
00   (3-2-63) 

where 
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b) When the neutral axis is inside the flange, i.e., yfwyw tHtAN )2-(  

yy yHyHBM 00 22
 (3-2-64) 

where 
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2) H shape 

a) When the neutral axis is inside the web, i.e., ywyw HtAN  

yyy HyMM 2
00   (3-2-65) 

where 
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b) When the neutral axis is inside the web, i.e., ywyw HtAN  

yfy yByBtM 00 22
2  (3-2-66) 

where 
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3) Box shape 
 

 

 

 

 

 

 

 

 

 

a) Moment around x-axis 

yy MM  ( I shape by changing 12ttw , 2tt f )   (3-2-67) 

b) Moment around y-axis 

yy MM  ( I shape by changing 22ttw , 1tt f , HB )  (3-2-68) 
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4) Circle shape 
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Yield rotation 
The yield rotation is  
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c) Nonlinear vertical springs 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-2-21. This model is called “fiber model”. The section is devided in several 

areas which have steel springs.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strength of steel spring 

The strength of the i-th steel spring is, 

yiiy Af ,        (3-2-71) 

where,  Ai : the spring governed area, y : the strength of steel 

 

Yield displacement of steel spring 

The yield displacement of the i-th steel spring is, 

i
iyiy kfd 0,, / , is

i AEk0       (3-2-72) 

where Es : the young’s modulus of steel 

tf 

B 

B : Width,  H : Height,  tw, tf, t1, t2, t: Thickness 
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B 
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(H-2tf)/5 

t1 t1 
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iyd ,  

(tension) 

(compression) 

Hysteresis of steel spring 

Figure 3-2-21 Nonlinear vertical springs 
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The same modification can be done for the nonlinear springs of column element as described for those of 

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the 

elastic element as shown in the following figure: 

 

Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p
AE

k0        (3-2-73) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 
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Figure 3-2-22 Modification of moment – rotation relationship 
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plastic zone. When 0zp , it represents the infinite stiffness for rigid condition. 

 

When we consider the flexural flexibility in x-z plane, the flexibility matrix for the nonlinear MS section is, 

 

z

y

i
iz

i
iiiz

z

y

i

i
i

i
i

z

y

N
M

AEp

xAEp

N
M

k

xk

'
'

0

0

'
'

10

01 2

0

2
0

 (3-2-74) 

 
Also, introducing the flexibility reduction factors, 0,0,0 210 , the flexibility matrix of 

the elastic element is, 
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Making the modified flexibility matrix to be identical to the original one, 
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This gives the flexivility reduction factors as: 

2102211 '
11,

'
31,

'
31 zzzz pp

l
p

l
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  (3-2-77) 

Adopting
10

'
21

lpp zz  as discussed for beam element, the reduction factors will be: 

7.021 ,  8.00       (3-2-78) 
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3.2.2 Column with direct input 

 

 

In case of direct input for Moment-Rotation relationship, we neglect nonlinear interaction among 

zyx NMM  and define the flexural stiffness of nonlinear bending springs in X and Y directions 

independently. The rotational displacement vector of the nonlinear bending springs will be 
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 (3-2-79) 

The displacement vector of the column element is obtained as the sum of the displacement vectors of 

elastic element, nonlinear shear springs and nonlinear bending springs, 
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 (3-2-80) 
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The flexural matrix ][ Cf  is; 
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3.2.3 SRC Column 

a) Section properties 

 

Area of section to calculate axial deformation 

 STcEN aaaanBDA 211     (3-2-82) 

where, 
 csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

 wwfwfST thnttbna 11  :Area of steel 

  1,2 wf nn :  Type1, Type2,  

2,4 wf nn :  Type3 

2,3 wf nn :  Type4, Type5 

Area of section to calculate shear deformation 
 2.1,/BDAS       (3-2-83) 

B 

d2 

Figure 3-2-24 RC Column Section 

B : Width of beam,    
D : Height of beam, 
d1 : Distance to the center of x-direction main rebars, 
d2 : Distance to the center of y-direction main rebars,  
a1 : Area of x-side main rebars, 
a2 : Area of y-side main rebars, 
ac : Area of corner main rebars 
b1 : Width of steel 
h1 : Height of steel 
tw : Thickness of web 
tf : Thickness of flange 
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d1 

a1 

a2 
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ac 
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Moment of inertia around the center of the section 

 yScEy IdBaanDBI ,

2

11

3

2
1

12
   (3-2-84) 
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where 

SI  : Moment of inertia of steel 
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b) Nonlinear bending spring 

Hysteresis model of a nonlinear bending spring is the same as RC beam. 

 

Crack moment force  
For reinforced concrete elements, the crack moment, cM  is calculated as, 

6
56.0 NDZM eBc       (3-2-86) 
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Yield moment force 

The yield moment, yM  is calculated as, 

SyRCyy MMM ,,       (3-2-87)  

where 

RCyM ,  : Yield moment of reinforced concrete     

  
B

b
bytRCy bD

N
DNDaM 15.08.0,    (3-2-88)  

SyM ,  : Yield moment of steel   
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Appendix 3.2:   

 

A-1. Hysteresis of Steel and Concrete Springs of Multi-Spring Models for RC elements 

 

a) Steel spring 

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the 

tri-linear model is adopted after yielding as shown in Figure 3-2-15. 

 

The hysteresis of steel spring has the degradation point at the forces, ysf  and ysf , where  and  

are the arbitrary parameters 1,1 . The STERA_3D Program adopts the values as: 

5.0,3/1       (A1-1) 

Then, the yield deformation, *
ys d , may be obtained by Equations (3-2-31) and (3-2-13) considering the 

reduction factor . 
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Figure A-1-1 Normal tri-linear model for steel spring 
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b) Concrete spring 

The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-16. 

After compression yielding, strength degradation is considered by reducing the strength of the target point 

in reloading stage. 

 
Figure A-1-2 Tri-linear hysteresis model for concrete spring 
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A-2. Hysteresis of Poly-linear Slip Model for Shear Springs for RC and Masonry members 

Reference: FRAME-D manual, Tohoku University, 1983 (in Japanese) 

 

The poly-linear slip model is defined as the following hysteresis model. 
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Figure A-2- Poly-linear slip hysteresis model for shear spring 
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3.3 Wall 

3.3.1 RC Wall 

a) Section properties 

 

Area of section to calculate axial deformation 

 wEwCNCNN anltAAA 122,1,     (3-3-1) 

where, 

 2,1, , CNCN AA  : Area of section of side columns for axial deformation 

csE EEn /  : Ratio of Young’s modulus between steel (Es) and concrete (Ec) 

Area of section to calculate shear deformation 

 2.1,/22,1, wCSCSS ltAAA     (3-3-2) 

where, 

 2,1, , CSCS AA  : Area of section of side columns for shear deformation 

Moment of inertia around the center of the section 

 
2 23

2 1 1
, 1 , 2 , 1 , 212 2 2

w w w
y y C y C N C N C

t l l lI I I A A   (3-3-3) 

where, 

 2,1, , CyCy II  : Moment of inertia of side columns 

y 

x 

2wl  

1wl  

wl  

21 ,, www lll  : Width of wall, 
t  : Depth of wall, 
C1, C2  : Side columns,   
aw  : Area of rebars in a wall panel 

Figure 3-3-1 Wall Section 
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b) Nonlinear bending spring 

 

For the out of wall direction, each side columns behave independently in the same way as the column 

element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model 

of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in 

Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical 

calculation, a large enough value is used for the stiffness. 

The yield moment, yM  is obtained from the equilibrium condition in Figure 3-3-6 as, 

wwwywwysy NllalaM 5.05.0     (3-3-4) 

where, 

 sa  : Total area of rebar in the side column 

y  : Strength of rebar in the side column 
 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 
N : Axial load from the dead load 
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Figure 3-3-2 Moment – rotation relationship at bending spring 
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The crack moment, cM  is assumed to be, 

yc MM 3.0        (3-3-5) 

The tangential stiffness at the yield point, yk , is obtained from the following equation: 

02.0 Kk y        (3-3-6) 

The yield rotation of the nonlinear bending spring, y , is then obtained from, 

0

11
K
M y

y
y       (3-3-7) 

where, the stiffness degradation factor, y , is assumed as, 

02.0y        (3-3-8) 

Figure 3-3-3 Equilibrium condition under yielding moment 
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Case 1: In the case that bending springs are independently defined 

 
The rotational displacement vector of the nonlinear bending spring is defined independently, 

1 1 1'xA xA xAf M ,  1 1 1'xB xB xBf M    in y-direction at Side Column 1 

2 2 2'xA xA xAf M , 2 2 2'xB xB xBf M  in y-direction at Side Column 2  (3-3-9) 

'yAc yAc yAcf M , 'yBc yBc yBcf M   in x-direction at center Wall panel 

where, 1xAf , 1xBf , 2xAf , 2xBf , and yAcf , yBcf  are the flexural stiffness of nonlinear bending springs 
at side columns and the center wall panel of the element, and 

1 11xA xAf k , 1 11xB xBf k       

2 21xA xAf k , 2 21xB xBf k      (3-3-10) 
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x 

z 

y 

Figure 3-3-4 Nonlinear bending springs in the wall 
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The hysteresis model for M  relationship is the degrading tri-linear slip model as used for the 

hysteresis model of the bending springs of the RC wall. 
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Figure 3-3-5 Degrading Tri-linear Slip Model 
( =0.5, =0.0 and =0.001 as default values) 
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Case 2: In the case that nonlinear interaction between moment and axial components is considered 

To consider nonlinear interaction among zyx NMM , the nonlinear bending spring at the member 

end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure 

3-3-2. 

 
Displacement of the i-th nonlinear axial spring is, 
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the 

moment and the axial force. The equilibrium conditions are, 
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(3-3-15) 

where, Nc, N1 and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2, 

respectively. 

 

 
Figure 3-3-8 Equilibrium condition in the out of wall direction 
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The 

equilibrium condition for the side column 1 is, 

zc

x

x

yc

N

i
ii

N

i
ii

N

i
iii

N

i
iycixizci

N

i
iiix

ykykyxk

yxyk

ykM

2

1
11

2
1

1

1

1

1

0

)(

'

     

(3-3-16) 

Also, for the side column 2, 

zc

x

x

yc

N

i
ii

N

i
ii

N

i
iii

N

i
iycixizci

N

i
iiix

ykykyxk

yxyk

ykM

2

1
22

2
2

2

1

2

2

0

)(

'

     

(3-3-17) 

In a matrix form 
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c) Nonlinear vertical springs 

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member 

section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and 

modified for the wall element by Saito et.al. The vertical springs in the side columns are determined 

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in 

5 areas, and a steel springs and a concrete spring are arranged at the center of each area. 

 

 

Figure 3-3-9 Nonlinear vertical springs 
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Strength of steel spring in wall panel 

The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section, 

5
wyw

ys

a
f        (3-3-21) 

where,  

 wa  : Total area of vertical rebar in the wall panel 

wy  : Strength of rebar in the wall panel 

Strength of concrete spring in wall panel 
The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section, 

5
85.0 Bp

yc

A
f       (3-3-22) 

where,  

pA  : Total area of wall panel section 

B   Compression strength of concrete 

 
Yield displacement of vertical spring in wall panel 

The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those 

of the springs in the side columns. 

 

d) Nonlinear shear spring 

There are three nonlinear shear springs in x direction in wall panel and y direction in side columns. 

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4. 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 

jbp
QDM

p
Q wyw

Bt
y 0

23.0

1.085.0
12.0)/(

)18(053.0
  (3-3-23) 

where, 

 b  : Equivalent thickness of the wall ( 1wA l ) 

 j  : Distance between the centroids of tension and compression forces ( 10.8 wl ) 

 tp  : Tensile reinforcement ratio (100 ta b l )(%) 

B  : Compression strength of concrete ( N A ) 

M/(QD)  : Shear span-to-depth ratio (= 1/ (2 )wh l ) 

  1 11 / (2 ) 1 , 3 / (2 ) 3w wh l h l  

wp  : Shear reinforcement ratio 
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wy  : Strength of shear reinforcement 

0  : Axial stress of the column 
 

Crack shear force 

The crack shear force is, cQ , is assumed as,  

3
y

c

Q
Q        (3-3-24) 

Ultimate shear force 

The crack shear force is, uQ , is assumed as,  

cu QQ        (3-3-25) 

Crack shear deformation 

The crack shear deformation is obtained as, 

c cs l ,   
GA
Qc

c       (3-3-26) 

Yield shear displacement 
The yield shear deformation is assumed as, 

y ys l ,  
250
1

y       (3-3-27) 

Ultimate shear displacement 
The ultimate shear deformation is assumed as, 

u us l ,  
100

1
u       (3-3-28) 
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y 

Figure 3-3-10 Nonlinear shear springs in the wall 
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Example) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Shear strength of the side column in y-direction ycQ = 479.2 (kN) (see Column element) 
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0k GA l  
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Figure 3-3-11 Force–deformation relationship of shear spring 
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jbp
QDM

p
Q wyw

Bt
y 0

23.0

1.085.0
12.0)/(

)18(053.0
 

where, 

 1wb A l = 1652528/660 = 250 (mm), 10.8 wj l =5280 (mm) 

 100t tp a b l = 100(3096.8)/1652528=0.187 (%), B =240 (N/mm2), 

1/ (2 )wM QD h l =3000/13200 < 1  =1.0 

100 /w wp a b x = 0.0067, wa = 2 D13 = 253 (mm2), x = 150 (mm) 

wy = 1.1(295) = 324.5 (N/mm2), 0 N A =1000000/1652528=0.605 (N/mm2) 

 ywQ = 3458.37 (kN) 
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e) Modification of initial stiffness of nonlinear springs 

 

The same modification can be done for the nonlinear springs of wall element as described for those of 

beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the 

stiffness of the elastic element as shown in the following figure: 

yM  

cM  

M  M  

 c  y  

M  

 

= + 

Elastic element Nonlinear bending spring 

l
EIk 2

0  

0k  0k  pk  

Figure 3-3-12 Modification of moment – rotation relationship 
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as, 

z

iii

p
AE

k0        (3-3-29) 

where Ei : the material young’s modulus, Ai : the spring governed area, and pz : the length of assumed 

plastic zone. When 0zp , it represents the infinite stiffness for rigid condition. 

In the same manner of beam and column elements, introducing the flexibility reduction factors, 
0,0,0 210 , the flexibility matrix of the elastic element is, 

 

c

c

cc

W
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l

EI
lsym

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

EI
l

f

'
3

'.

6
'

3
'

3
'

6
'

3
'

3
'

6
'

3
'

0

2
2

22
1

1
2

11
1

2

1

 (3-3-30) 

Also, adopting 
10

'lpz  as discussed for beam and column elements, the reduction factors will be: 

7.021 ,  8.00       (3-3-31) 
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f) Reduction factor of shear stiffness 

 

If shear cracking occurs in the reinforced concrete wall, the shear stiffness decreases. The following graph 
shows the test results of the relationship between the stiffness reduction factor  and the lateral drift 

angle 310R (referred from “Standard for Structural Calculation of Reinforced Concrete Structure”, 
Architectural Institute of Japan). 

  

For example, if the lateral drift angle is over than 1/1000, the reduction factor becomes less than 0.2.  

Therefore, STERA_3D assumes the “Reduction Factor for Stiffness” is 0.2 in the default setting for the 

option of the RC wall element. 
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3.3.1 Direct Wall 

 

Direct Wall identifies the force-displacement points in the back-bone curves of the nonlinear shear spring 

and the nonlinear bending spring. 

 

Different types of hysteresis model are prepared for the force-deformation relationship of the spring. 

 

Figure 3-3-14 Hysteresis model of the shear and bending springs 

 (a) Normal-trilinear             (b) Degrading-trilinear 
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Figure 3-3-13 Element model for wall 
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3.3.2 Steel Wall (Brace) 

a) Buckling of brace 

 
 

Under the compression load, the stress of buckling failure is calculated theoretically as 
2

2E
E

,  

where 
L
i

: slenderness ratio 

 

 

If E y  (strength of steel), the compression failure will occur before buckling. 

 

 

 

 

 

 

 

 

 

Figure 3-3-16 Relationship between buckling stress and slenderness ratio 

 

 

 

 

Figure 3-3-15 Element model for brace 
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The AIJ (Architectural Institute of Japan) guideline adopts the following equation for the stress of buckling. 

2
1 0.4cr p y , for p    (3-3-32) 

0.6
cr y

p

,   for p    (3-3-33) 

where 
2

0.6p
y

E
: Critical slenderness ratio 

 

b) Hysteresis model 

The hysteresis model proposed by Wakabayashi et. al. is adopted in STERA_3D (hereinafter referred to as 

Wakabayashi model). The model consists of four Stages A, B, C and D. 
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The compression curve (Stage B) and the tension curve (Stage C) are defined using the nondimensional 

strength and deformation as, 
 0/n N N : nondimensional strength 

 0/ : nondimensional deformation 

where N : axial load, 0 yN A : axial strength (A: area, y : yielding stress of steel) 

 : displacement, 0 y yL L E : yield deformation 

Both curves are assumed to be the following form 

 1 rn a b  

where ,a b : parameters of the function of nondimensional Euler load 2 2/E E y yn E  

 

b-1) Compression Curve 

Compression curve (Stage B) is defined from the following empirical formula, 

 1 2
1 21n p p  

where  1 2
10 1, 4 0.6

3
E

E
np p n  

Compression strength cn  is also on this curve, therefore, 

 1 2
1 21c cn p p  

or 2
1 2 1 0c c cp n p n  

Since 
0

/
/

cc c
c

E L ANn
N E L A

 

Finally cn  is obtained by solving 

 3
1 2 1 0c cp n p n  

b-2) Tension Curve 

Tension curve (Stage C) is defined from the following empirical formula, 

 3 2
31 1n p  

where 3
1

3.1 1.4E

p
n
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b-3) Movement of Tension Curve 

Movement of tension curve x  is defined as follows: 

1 2ln 1ax q q s  

where  1 2
3 1 , 0.115 0.36

10
E

E
nq q n  

 
 
 
 
b-4) Movement of Compression Curve 
Movement of compression curve y  is defined to satisfy the following relationship 

 
0 0

b

b

y
y

 

 
 
 
 

 

 

 

 

 

 

 

a  s  x  

0b  

b  

y  

0y  
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b-5) Movement of Compression Curve 

The point shifting from the unloading Stage D to Stage C is obtained by assuming that the  
plastic tension deformation t  is proportional to the plastic compression deformation c  as 
 3t cq  

where  3 0.3 0.24Eq n  

 

 

 

 

 

 

 

Example 

 

60  

 

 

 

 

 

 

 

 

  Starting from compression    Starting from tension 

120  

 

 

 

 

 

 

 

 

 Starting from compression    Starting from tension 

 

References 

M. Shibata, T. Nakayama and M. Wakabayashi, "Mathematical Expression of Hysteretic Behavior of 

Braces", Research Report, Architectural Institute of Japan, No. 316, pp.18-24, 1982.6 (in Japanese) 

t  

c  
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3.3.3 SRC Wall (Brace) 

a) Section properties 
 

 

 

 

 

 

 

 

 

 

b) Nonlinear shear spring 

 

Yield shear force 

The yield shear force, yQ  is calculated as, 

 SyRCyy QQQ ,,       (3-3-34)  

where 

RCyQ ,  : Yield shear force of reinforced concrete     

 jbp
QDM
pQ wyw

Bt
RCy 0

23.0

, 1.085.0
12.0)/(

)18(053.0
  (3-3-35)  

SyQ ,  : Yield shear force of steel   

 RAQ SySSy cos,,       (3-3-36)  

where,  
SA  : Area of steel (mm2) 

Sy ,  : Strength of steel (N/mm2) 
R : Angle of steel 

Figure 3-3-17 Element model for SRC wall (RC wall with steel brace) 
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3.4 External Spring 

 

3.4.1 Lift up spring 

 

In STERA_3D, if there is no building element at one end of the external spring, this end is considered fixed. Such 

spring is used to express the stiffness the ground attached to the building. In such a case, as the relationship 

between axial force and deformation of the spring, the linear stiffness is defined only in compression side and zero 

stiffness in the tension side as shown in Figure 3-4-2, assuming that the building detaches from the ground.  
 

 

 

 

 

 

Figure 3-4-1 Element model for external spring 
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Figure 3-4-2 Hysteresis model of the external spring 
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3.4.2 Air spring 

Reference: 

1) Marin Presthus, “Derivation of Air Spring Model Parameters for Train Simulation”, Master of Science 

Programme, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 

Sweden, 2002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
An effective area eA  is introduced to express the volume change of air bag bV  as 

 b eV A z        (3-4-1)  

When the initial pressure of air spring is 0p , after the deflection, the pressure will change as 

 0b bp p p  for air bag     (3-4-2a)  

 0r rp p p  for reservoir     (3-4-2b)  

The volume will also change as 
 0b b e s sV V zA z A  for air bag    (3-4-3a)  

 0r r s sV V z A   for reservoir    (3-4-3b)  

where  

sz  : the movement of air mass through orifice 

sA  : area of surge pipe 

The pressure and the volume of the isentropic process can be described by  

 1 1 2 2
n np V p V        (3-4-4)  

where 
 1 1,p V : initial pressure and volume 

 2 2,p V : final pressure and volume 

Figure 3-4-3 Air spring (V : volume, p : relative pressure, A : area) 
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 n : ratio of specific heat = 1.4 for Air 

Applying the above equation to the air bag 

 0 0 0 0
n n

b b e s s bp p V zA z A p V     (3-4-5a)  

 0 0
0

1
n

e s s
b

b

zA z Ap p p
V

    (3-4-5b)  

 by using Taylor expansion 1 1 ( 1)nx nx x  

 
0 0

1 1 1e s sb

b

n zA z Ap
p V

    (3-4-5c)  

 Assuming 
0 0

0b e s s

b

p zA z A
p V

 

 
0 0

e s sb

b

n zA z Ap
p V

      (3-4-5d)  

Using the same procedure for the reservoir 

 0 0 0 0
n n

r r s s rp p V z A p V      (3-4-6a)  

 
0 0

s sr

r

nz Ap
p V

       (3-4-6b)  

 

From the Bernoulli equation, the difference of the pressure between the left and right of the pipe speeds up a 

portion of gas through the orifice. The force balance in the pipe is given by 

  s b r s sA p p C z       (3-4-7a)  

where 
 : viscous damping parameter determined by experiment 

Substituting Eq. (3-4-5d) and (3-4-6b), 

 0
0 0

e s s s s
s s s

b r

zA z A z Ap A n C z
V V

     (3-4-7b)  

 0 0

0 0 0

1 1s e b s
s s s

b e b r

np A A V Az z C z
V A V V

    (3-4-7c)  

205



The force balance for the piston can be expressed as 

z e b atmF A p p   (3-4-8)  

where  

atmp : atmospheric pressure 

Substituting Eq. (3-4-2a), 

0

0

0 0
0

z b atm e

b e atm e

e s s
e atm e

b

F p p p A

p A p p A

n zA z A
p A p p A

V

  

2
0

0
0

e s
s atm e

b e

np A Az z p p A
V A

    (3-4-9)  

From Eq. (3-4-7c)  

 0 0 0

0 0

s e s b r
s s s

b e r

np A A A V Vz z C z
V A V

    (3-4-10)  

  0

0 0

r

b r

V
V V

 

 
2

0

0

e s e
s s s

b e s

np A A Az z C z
V A A

     (3-4-11)  

2
0

0
0

1e s
z s atm e

b e

np A AF z z p p A
V A

   (3-4-12)  

2 2
0 0 0 0

0 0 0 0 0

e e r r
v e

b b r b b

np A np A V VK K
V V V V V

,   
2

0

0 0

e
e

b r

np AK
V V

 

Introducing a new variable s
s

e

Ay z
A

 

e e
v s

s s

A AK z y C y C y
A A

,    e e
s

s s

A AC C
A A

     (3-4-13) 

0 0
1 1 1z v atm e v v atm eF K z y p p A K z y K z p p A  (3-4-14) 

Therefore 

vK z y C y    (3-4-15) 

0z v e atm eF K z y K z p p A  (3-4-16) eK  vK  

C  

zF  

z  

y  
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Incremental form of equation is 
 

( 1) ( 1) ( 1) ( 1)z n v n n e nF K z y K z      (3-4-17) 

( 1) ( ) 1n n nz z t z t  

( 1) ( ) 1n n ny y t y t  
 
Then 

( 1) ( )
( 1) ( 1)

n n
v n n

y y
C K z y

t
     (3-4-18) 

 
The solution of Eq. (3-4-18) is obtained by solving the following equation: 

( 1) ( )
( 1) ( 1) ( 1) 0n n
n v n n

y y
f y C K z y

t
   (3-4-19) 

Its derivative regarding ( 1)ny  is 
1

( 1) ( )
( 1)' n n
n v

y yC
f y K

t t
     (3-4-20) 

 

A Newton-Raphson method is applied to solve the nonlinear equation ( 1) 0nf y  

( 1)
( 1) ( 1)

( 1)'
nnew old

n n
n

f y
y y

f y
      (3-4-21) 

 

where the prime ( 1)' nf y  denotes derivative with respect to ( 1)ny , 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

f y  
y  

( 1)
old

ny  ( 1)
new

ny  
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3.4.3 Base plate 

 

 

 

The relationship between the moment at the bottom of the steel column, M, and the rotation angle of the base plate, 

R, is given as a rotational spring. The hysteresis model of the M-R relationship takes into account plastic 

deformation due to anchor bolt pullout and tensile yielding. 

 

3.4.4 Pendulum element 

 

 
From the equilibrium condition of the moment force 

2 sin 0ml mgl         (3-4-22) 

Setting y l , sin  

m  

l   

ml  

mg  

y  

Figure 3-4-5 Pendulum element 

Figure 3-4-4 Hysteresis model of the base plate 
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0K   
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0mly mgl    0mly mgy    0mgmy y
l

   0gy y
l

  (3-4-23) 

Therefore, the natural period of the pendulum element is 

2 lT
g

 

It means that the pendulum element is equivalent to the element with the horizontal stiffness, h
mgk
l

. 

0mgmy y
l

  0,h h
mgmy k y k
l

 

 

Furthermore, the horizontal stiffness of the member with the initial tensile force, T, can be interpreted as h
Tk
l

, 

even in the static condition. 

 

Therefore, the pendulum element can be interpreted as a line element with the axial stiffness, vk , and the 

horizontal stiffness, h
Tk
l

, where T  is calculated by the gravity force. 

l   

T  

T  

y  

Figure 3-4-5 Pendulum element 

sin TT T y
l
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3.5 Base Isolation 

The element model of base isolation consists of shear springs arranged in x-y plane changing its direction with 

equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model developed by 

Wada et al.   
 

 

a) Nonlinear shear spring 

The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure 3-5-2. The 

force and displacement vectors of i-th shear spring are expressed as, 

i
i

i

yi

xi q
q
q

sin
cos

,

,       (3-5-1) 

y

x
iii u

u
u sincos       (3-5-2) 

From the relationship, iii ukq , the constitutive equation of i-th shear spring is, 

y

x

iii

iii

y

x
ii

i

i
i

yi

xi

u
u

u
u

k
q
q

2

2

,

,

sinsincos
sincoscos

sincos
sin
cos

 (3-5-3) 

 

Figure 3-5-1 Element model of base isolation 
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Figure 3-5-2 Hysteresis model of the shear spring 
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation element 

is, 

y

x
N

i iii

iii
i

y

x

u
u

k
Q
Q

1
2

2

sinsincos
sincoscos

   (3-5-4) 

where, N is the number of shear springs in an element. In STERA_3D, N=6 is selected. 

 

First and second stiffness 

We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial stiffness 

of the base isolation element, 0K , is obtained from Equation (3-5-4) by substituting 0,1 yx uu . 

0
1

2
0 cos kK

N

i
i       (3-5-5) 

Therefore, the initial stiffness of each shear spring is, 

N

i
i

K
k

1

2

0
0

cos
       (3-5-6) 

The same relationship is established for the second stiffness after yielding,  

N

i
i

y
y

K
k

1

2cos
       (3-5-7) 

where, yK  and yk  are the second stiffness after yielding for the base isolation element and the nonlinear shear 

spring, respectively. 

 

Yield shear force 

The yield shear force of the base isolation element, yQ  , is obtained assuming that all the nonlinear shear springs 

reach their yielding points except the spring perpendicular to the loading direction, and the increase of the force 

after yielding is negligible (Figure 3-5-3). That is, 

y

N

i
iy fQ

1
cos       (3-5-8) 

Therefore, the yield shear force of each shear spring is, 

N

i
i

y
y

Q
f

1
cos

       (3-5-9) 
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Figure 3-5-3 Assumption of yield shear force 
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Appendix 3.5:  

 

A-1. Hysteresis of LRB (Lead Rubber Bearing) 

 

LRB (Lead Rubber Bearing) is composed by rubber layers, steel plates and a lead plug core. 

 

 
Figure A1-1. Lead Rubber Bearing (from Bridgestone Catalog) 

 

1) Bi-Linear Model 

 

The bi-linear hysteresis of LRB is defined as a combination of an elastic model and elasto-plastic model as shown 

Figure A1-2.  

 

 

Figure A1-2. Bi-linear model 

 

The elastic stiffness, Kr, from the rubber is calculated as, 

r

r
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A
GK         (A1-1) 
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where Gr is the shear modulus of the rubber, Ar is the cross section area of the rubber and Hr is the total height of the 

rubber.  

The elastic stiffness, Kp, from the lead plug is calculated as, 

p

p
pp H

A
GK         (A1-2) 

where Gp is the shear modulus of lead, Ap is the cross section area of lead plug and Hp is the total height of the plug. 

 

The initial elastic stiffness, K1, and the secondary stiffness, K2, of the bi-linear model are then obtained as, 

r

pr

KK
KKK

2

1 (A1-3)

The yielding deformation, Dy, is determined from the characteristics of the lead plug. The yielding force, Fy, is 

calculated as, 

ypry DKKF        (A1-4) 

 

2) Modified Bi-linear Model 

 

Hysteresis of a lead rubber bearing has a characteristic of stiffness degrading according to the strain level as shown 

in Figure A1-3. 

 

 

 

 

 

 

 

 

 

 

 

Figure A1-3. Hysteresis of a lead rubber bearing 

 

The secondary stiffness of a lead rubber bearing, Kd, is expressed as, 

 prKdd KKCK       (A1-5) 

where  is a strain ratio ( rH/ ) and KdC  is a modification factor of the secondary stiffness, which 

takes into consideration the strain dependency. Also, the intercept force is defined as, 

Force, F 

Deformation,  

Skelton curve 
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ppQdd ACQ        (A1-6) 

where QdC  is a modification factor of the yielding shear force and p is the yielding shear stress of lead. The 

force is then expressed by: 

dd QKF        (A1-7) 

 
Figure A1-4 Hysteresis loop model of lead rubber bearing 

 

The modification factors, KdC   and QdC  , are represented by the following formulas under 15 degrees 

Celsius. 

12.0

25.0

43.0779.0

KdC
,
,
,
  

5.20.1
0.125.0

25.0
     (A1-8) 

1
106.1
036.2

145.0

41.0

QdC
,
,
,
  

5.0
5.01.0

1.0
     (A1-9) 

 

 

Figure A1-5. Modification factors 
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Under a different temperature, t, the secondary stiffness and the yielding shear force are to be corrected by the 

following formulas: 

00 00271.0exp tttKtK dd      (A1-10) 

00 00879.0exp tttQtQ dd      (A1-11) 

where t0 = 15 degree Celsius. 

 

The primary stiffness of the lead rubber bearing, Ku, in Figure A1-4 is determined from the secondary stiffness, Kd, 

as, 

du KK         (A1-12) 

where 1510 . 

 

Following the suggestion in the manual of CANNY (K. Li, 2004), the hysteresis rules are: 

 

a) Elastic range 

Under the strain level less than e, the hysteresis is assumed to be linear with the secant stiffness at the strain, e, 

that is: 
 eeFK /0         (A1-13) 

 reeedeede HQKF ,      (A1-14) 

The value, 0.01e  , is adopted in STERA3D. 

b) Loading on the skeleton curve after elastic range 

Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at 

the next step: 
 ddFK /)(         (A1-15) 

 

Reference:  

Response Control and Seismic Isolation of Buildings, Edited by Masahiko Higashino and Shin Okamoto, SPON 

PRESS, October 17, 2006. 

Canny Technical Manual, Kangning Li, August 2004 
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2) Consideration of strength reduction by dissipated energy 

 

Reference 
1) Masanori Iiba, et.al., “Research on Characteristics of Isolators and Dampers under Multi-cyclic Earthquake Motions 

and Effects on Response of Seismically Isolated Buildings”, Building Research Institute, National Research and 
Development Agency, Building Research Data, No. 170, April 2016 (in Japanese). 

2) Haruyuki Kitamura and Miyuki Omiya, “Design method for long period ground motion - Points to note when 
dealing with long-period ground motion”, The Kenchiku Gijyutsu, No. 815, pp.116-125, 2017.12 (in Japanese) 

 
From Reference 1), the yield shear stress of lead plug, , is expressed as 

0 1 , 0.4 0.25T

L T LT T T T     (A1-16) 

Where, 
 0 : Design value of the yield shear stress of lead plug = 15.0 (N/mm2) 

 T : Average temperature of lead plug 
 LT : Melting point of lead plug = 327.5 (oC) 

For example, when T =20 (oC), is calculated to be 10.3 (N/mm2). 

 

Reference 2) suggested another formula as 

'd dQ Q         (A1-17) 

10.06 1.25exp
360

pb

pb

W
V

      (A1-18) 

where 

 dQ : Intercept force without reduction 
 : Reduction factor 
 pbW : Dissipated energy 

 2

4pb pb pbV D h : Volume of lead plug 

1pb r sh nt n t : Height of lead plug 

 n : number of rubber layer, rt : thickness of rubber layer, st : thickness of steel plate 
 
Also, the following formula is sometimes used 

8.33 10.06 1.25exp
7.97 360

pb
pb

pb

W
f D

V
    (A1-19) 

where 

 0.310.16pb pbf D D : Correction value by the diameter of the lead plug, pbD (mm) 
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STERA_3D adopts Equation (A1-19). The reduction factor   is plotted as a function of energy dissipation as 

follows. 

 
Figure A1-6. Strength reduction factor by energy dissipation 

Example)  
Bridgestone Product: LH060G4_C 

Diameter (mm) 600 

Lead plug diameter (mm) 100 

Effective area (×102mm2) 2749 

Thickness of one rubber layer (mm) 4 

Number of rubber layers 50 

Total rubber thickness (mm) 200 

Total height (mm) 407.9 

Shear modulus of rubber Gr (N/mm2) 0.385 
2) 0.583 

Yield shear stress of lead sy (N/mm2) 7.967 

(shear properties at shear strain = 100%) 

Initial stiffness K1 (×103kN/m) 7.18 (=13×K2) 

Post yield stiffness K2 (×103kN/m) 0.552*1) 

Characteristic strength Qd (kN) 62.6*1) 

*1)  

Shear stiffness of laminated rubber Kr = Gr Ar / H (×103kN/m) 0.529  
3kN/m) 0.023  

Total stiffness K2 = Kr+Kp (×103kN/m) 0.552  

Yield strength of lead Qd = sy Ap (kN) 62.573  
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(a) Bi-linear                               (b) Modified bi-linear 
Figure A1-7. Comparison of hysteresis loops 
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A-2. Hysteresis of HDRB (High Damping Rubber Bearing) 

 

HDRB (High Damping Rubber Bearing) is composed by rubber layers and steel plates. By adding special ingredient 

in the natural rubber, rubber itself demonstrates damping characteristics. 

 

 
Figure A2-1. High Damping Rubber Bearing (from Bridgestone Catalog) 

 

1) Modified Bi-linear Model 

 

The hysteresis of HRB is defined as a modified bilinear model as shown Figure A2-2.  

 

Figure A2-2. Bi-linear model 

 

The equivalent stiffness, eqK , is calculated as, 

/eq eq rK G A H        (A2-1) 
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where : shear strain ( rH/ ) 
Ar : cross section area of the rubber 

Hr : total height of the rubber.  

eqG : Equivalent shear modulus 
n

neqG 3
3

2
210 (A2-2) 

eqh  : Equivalent damping factor 
n

neqh 3
3

2
210 (A2-3)

u : Intercept force ratio 
n

nu 3
3

2
210 (A2-4) 

 

Rubber code 

(shear strain) 

 Coefficient of each order  

4th 3rd 2nd 1st 0  
X0.3R  
0.1 3.0  

eqG  (N/mm2) 0.0255 -0.2213 0.7283 -1.1028 0.8703  

eqh   -0.005 0.015 -0.006 0.166  

u   -0.0087 0.0262 -0.0105 0.272  
X0.4S 

0.1 2.7  
eqG  (N/mm2) 0.054 -0.416 1.192 -1.583 1.145  

eqh   -0.007 0.02 -0.009 0.236  

u   -0.0132 0.0401 -0.019 0.4001  
X0.6R 

0.1 2,7   
eqG  (N/mm2) 0.1364 -1.016 2.903 -3.878 2.855 0.62 

eqh   0.02902 -0.1804 0.2364 0.915 0.24 

u   0.03421 -0.2083 0.2711 0.9028 0.408 

Hysteresis of a high damping rubber bearing has a characteristic of stiffness degrading according to the strain level 

as shown in Figure A2-3. 

Figure A2-3. Hysteresis of a high damping rubber bearing 

Force, F 

Deformation,  

Skelton curve 
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Each shear properties shall be determined by the following equations: 

 

The initial stiffness    

1 10 eqK K        (A2-5) 

The secondary stiffness  

2 1  eqK u K       (A2-6) 

The intercept force   

,d M M eq rQ u Q Q K H     (A2-7) 
 

 
Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at the 

next step: 
 ddQK /)(         (A2-8) 
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2) Consideration of strength reduction by dissipated energy 

 

Reference 
3) Takuya Nishimura et al., “Practical Response Evaluation Method for Seismic Isolation System against Long Period 

Earthquake Motions - Part2- High-Damping Rubber Bearing and Lead Damper”, AIJ Annual Convention, 
Architectural Institute of Japan, 2013, pp.767-768 (in Japanese) 

 

In the above reference, the reduction factors of equivalent stiffness and equivalent damping are proposed as, 

2

2

mmN0.10952.00025.0
mmN0.100.10073.0

VEVEC
VEVEC

K

K    (A2-9) 

2

2

mmN0.10977.00016.0

mmN0.100.10039.0

VEVEC

VEVEC

h

h     (A2-10) 

where E: dissipated energy, V: volume of rubber

 

 

 

 

 

  

 

 

 

 

 

 

To consider the strength reduction by energy dissipation, STERA_3D modifies the equivalent shear modulus and the 

equivalent damping factor as, 

'eq K eqG C G       (A2-11) 
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A-3. Hysteresis of Lead Damper 

 

Reference 
1) Takuya Nishimura et al., “Experimental Study on Multi-cyclic Characteristics of Devices for Seismic Isolation 

against Long Period Earthquake Motions: Part 7- Lead Damper”, AIJ Annual Convention, Architectural Institute of 
Japan, 2011, pp.667-668 (in Japanese) 

2) Takuya Nishimura et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic 
Isolation against Long Period Earthquake Motions: Part 5-Modeling of Lead Damper and Seismic Response 
Analyses”, AIJ Annual Convention, Architectural Institute of Japan, 2012.9, pp.383-384 (in Japanese) 

 

 

 

 

 

 

 

 

 

Figure A3-1. Lead damper 

 
 
 
 
 
 
 
 
 
 

Figure A3-2. Relationship between dissipated energy and strength reduction factor 

 
In the above references, from the cyclic loading test of a lead damper with the different horizontal displacement 

amplitudes, three line graphs are obtained for the relationship between the dissipated hysteresis energy and the 

horizontal strength reduction ratio. The breaking points of the line are proposed as follows to match the test results. 
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a) The first point of strength reduction, 11 , ER  
0.11R  

4.01.02322371 ddE , 4.0892,1.0195 dd   (kNm)   (A3-1) 
          

b) The second point of strength reduction, 22 , ER  

4.01.060.062.02 ddR , 4.0860.0,1.00.680 dd  

205,22E  (kNm)         (A3-2) 
 

c) The third point of strength reduction, 33 , ER  

4.01.0525.0375.03 ddR , 4.0585.0,1.00.428 dd  

000,83E  (kNm)         (A3-3) 
 

d) The fourth point of strength reduction, 44 , ER  
04R  

4.015.0206096834 ddE , 4.08859,15.09854 dd  (kNm)  (A3-4) 

 

The hysteresis of the lead damper is defined as a bilinear model. To consider the strength reduction by energy 
dissipation, STERA_3D adopts the line of 2.0d (m) for random amplitude. The strength of a lead damper, dQ , 

is then expressed as, 

0dd QRQ         (A3-5) 

where, R : Strength reduction factor 

 dQ : Initial strength of a lead damper 

 
 
 
 
 
 
 
 

Force, F 

Deformation,  

Skelton curve 
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A-4. Hysteresis of Elastic Sliding Bearing 

 

Reference 
1) Shigeo Minewaki et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic Isolation 

against Long Period Earthquake Motions : Part 2-Modeling of Low Friction Bearing and Viscous Damper”, AIJ 
Annual Convention, Architectural Institute of Japan, 2012, pp.377-378 (in Japanese) 

Figure A4-1. Elastic Sliding Bearing 
 

 
In the above reference, the dynamic friction coefficient changes according to the temperature of the sliding plate as, 

0145.0105.7 5
0 T       (A4-1) 

The change of the friction coefficient is expressed as a function of the increment of temperature as 

03.0103.0 06.0T       (A4-2) 

On the other hand, the increment of temperature has the following relationship with the dissipated energy dE

(kNmm), 

9.000019.0 dET        (A4-3) 

Therefore, the dynamic friction coefficient is obtained from the dissipated energy, 

 dET0        (A4-4) 

 
The hysteresis of the elastic sliding bearing is defined as a bilinear model. In STERA_3D, the initial friction 
coefficient is temporary assumed as 029.00  from the catalog of a manufacture. The strength reduction by 
energy dissipation will be expressed as, 
 

000 ddd QEQ       (A4-5) 

where, 0dQ : Initial strength of an elastic sliding bearing 
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A-5. Hysteresis of Bouc-Wen Model 

 

  
=0.5, =0.5    =0.1, =0.9 

 

Reference 
1) Terje Haukaas and Armen Der Kiureghian, “Finite Element Reliability and Sensitivity Methods for 

Performance-Based Earthquake Engineering”, PEER 2003/14, APRIL 2004 
2) Wen, Y.-K. (1976)  “Method for random vibration of hysteretic systems." Journal of Engineering 

Mechanics Division, 102(EM2), 249-263. 
3) Baber, T. T. and Noori, M. N. (1985). “Random vibration of degrading, pinching systems." Journal 

of Engineering Mechanics, 111(8), 1010-1026.  
 
aa) Basic formulation 
The basic formula of Bouc-Wen model is 
 

zkxkf 00 1        (A5-1) 

NN zxzzxxA
z

1

      (A5-2) 

 
where, , , and N are parameters that control the shape of the hysteresis loop, while A, , and  

are variables that control the material degradation.  

From the yield deformation, y , the parameters ,  are expressed as, 

N
y0  and  N

y0      (A5-3) 

 
The model can be written as, 

t
x

x
zx

zxzA
z

N sgn
     (A5-4) 

 

-1

0

1

-3 -2 -1 0 1 2 3

-1

0

1

-3 -2 -1 0 1 2 3
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This leads to the following expression for the continuum tangent 

zxzA
kk

x
zkk

x
fk

N sgn
11 0000  (A5-5) 

The evolution of material degradation is governed by the following choice of equations (Baber and 
Noori 1985): 

eeeAA A 1,1,0      (A5-6) 

where e is defined by the rate equation 

xzke 01        (A5-7) 

and ,,,0 AA and are user-defined parameters. 

 
b) Incremental form for numerical analysis 
Incremental form of Eq.(A5-1) is 

)1(0)1(0)1( 1 nnn zkxkf      (A5-8) 

By a backward Euler solution, 

1)()1(

1)()1(

nnn

nnn

txtxx
tztzz

       (A5-9) 

Applied to Eq. (A5-4),  

t
xx

z
t

xx
zA

tzz nn

n

nn
nnN

nn

nn
)()1(

)1(

)1()1(
)()1(

)1()1(

)()1(

sgn
 (A5-10) 

where 

)1()1()1()1()1(0)1( 1,1, nnnnnAn eeeAA   (A5-11) 

)()1()1(0)(

)()1(
)1(0)()1(

1

1

nnnn

nn
nnn

xxzke
t

xx
zktee

     (A5-12) 

Since  

)1()()1()1(
)()1( sgnsgn nnnn

nn zxxz
t

xx
    (A5-13) 
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0)()1(
)1(

)()1()1( nn
n

nnn xxzzzf     (A5-14) 

)1()1()1( n

N

nn zA       (A5-15) 

)1()()1(sgn nnn zxx       (A5-16) 

 
 

A Newton-Raphson method is applied to solve the nonlinear equation 0)1(nzf , 

)1(

)1(
)1()1( ' n

nold
n

new
n zf

zf
zz   (A5-17) 

where the prime )1(' nzf  denotes derivative with 

respect to )1(nz , 

 
 
 
 
 
Evaluation of the function derivatives is summarized below. 

Original )1(nzf  Function derivatives )1(' nzf  

t
xx

zktee nn
nnn

)()1(
)1(0)()1( 1  

t
xx

kte nn
n

)()1(
0)1( 1'  

)1(0)1( nAn eAA  )1()1( '' nAn eA  

)1()1( 1 nn e  )1()1( '' nn e  

)1()1( 1 nn e  )1()1( '' nn e  

)1()1()1( n

N

nn zA  

)1()1(

)1()1(

1

)1()1(

'

sgn''

n

N

n

nn

N

nn

z

zzNA
 

)()1(
)1(

)()1()1( nn
n

nnn xxzzzf  )()1(
)1(

2
)1()1(

)1(

''
1' nn

n

nn
n xxzf  

(A5-18) 
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The procedure can now be summarized as follows: 
 

1. While ( tolzz old
n

new
n )1()1( ) 

(a) Evaluate function  

)()1()1(0)()1( 1 nnnnn xxzkee  

)1()1()1()1()1(0)1( 1,1, nnnnnAn eeeAA  

)1()()1(sgn nnn zxx   

)1()1()1( n

N

nn zA  

)()1(
)1(

)()1()1( nn
n

nnn xxzzzf      (A5-19) 

(b) Evaluate function derivatives 

t
xx

kte nn
n

)()1(
0)1( 1'  

)1()1( '' nAn eA  

)1()1( '' nn e  

)1()1( '' nn e  

)1()1()1()1(

1

)1()1( 'sgn'' n

N

nnn

N

nn zzzNA  

)()1(
)1(

2
)1()1(

)1(

''
1' nn

n

nn
n xxzf     (A5-20) 

(c) Obtain trial value in the Newton-Raphson scheme 

)1(

)1(
)1()1( ' n

n
n

new
n zf

zf
zz        (A5-21) 

(d) Update )1(nz  

)1()1( n
old
n zz  and  new

nn zz )1()1(      (A5-22) 
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c)) Tangent stiffness 
The tangent stiffness is necessary to compute the nonlinear structural analysis.  
From the incremental forms: 

)1(0)1(0)1( 1 nnn zkxkf   

t
xx

z
t

xx
zA

tzz nn

n

nn
nnN

nn

nn
)()1(

)1(

)1()1(
)()1(

)1()1(

)()1(

sgn
 

 
The tangent stiffness is calculated as (T. Haukaas and A. D. Kiureghian, 2004); 

)1(

)1(
00

)1(

)1(
)1( 1

n

n

n

n
n x

z
kk

x
f

k      (A5-23) 

5

4

)1(

)1(

b
b

x
z

n

n         (A5-24) 

where 

)1()()1(sgn nnn zxx   

)1()1()1( n

N

nn zA  

)1(01 1 nzkb  

)()1(02 1 nn xxkb  

)1(

)()1(
3

n

nn xx
b  

)1(
1)()1(2

)1(
1)1(3134

n
nn

n

N

nA bxxbzbbbb  

2)()1(2
)1(

2)1(3

)1()1(

1

)1(3235 sgn1
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zzNbbbb
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n

N

n

nn

N
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A-6. Hysteresis of FPB (Friction Pendulum Bearing) 

 

1) TPB (Triple Friction Pendulum Bearing) 

 

 
 
Reference 
1) Daniel M. Fenz, Michael C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior: 

Theory”, Earthquake Engineering and Structural Dynamics, 2—8: 37: 163-183 
 
Effective radius of each surface 

1 1 1effR R h , 2 2 2effR R h ,  3 3 3effR R h , 4 4 4effR R h  

Friction force of each surface 

1 1fF W , 2 2fF W ,  3 3fF W , 4 4fF W  

Stiffness after sliding of each surface 

1
1

f
eff

WK
R

, 2
2

f
eff

WK
R

,  3
3

f
eff

WK
R

, 4
4

f
eff

WK
R

 

 

where, 

 iR : the radius of curvature of the i-th sliding surface,  

ih : the radial distance between the i-th sliding surface and the pivot point of the articulated slider 

id : the displacement capacity to the displacement restrainer on the i-th sliding surface, 

i : the coefficient of friction of the i-th sliding surface, 

W : the vertical load. 
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Restoring force of each surface is the bilinear model with the capacity deformation. 

 

 

  
 
The TPB can be modeled as a model of four springs with bilinear restoring forces connected in 
series. 
 
 
 ,F u  

1u  
2u  3u  4u  
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In small incremental deformation ( 1, , 4)idu i , if the instantaneous stiffness of each spring *
fiK is used,  

 

 
 
 

 

The total incremental deformation du  of the TPB is the sum of the deformation of each spring 

4

1 2 3 4 * * * *
1 1 2 3 4

1 1 1 1
i

i f f f f

du du du du du du dF
K K K K

 

Therefore, the deformation of each spring iu  is obtained from the total deformation u  as 

* *

* * * *
1 2 3 4

1,
1 1 1 1

f f f f

dF K du K

K K K K

 

 
The conditions of parameters are: 

1) Effective radii of inner surfaces 2 and 3 are smaller than those of outer surfaces 1 and 4 

1 4 2 3eff eff eff effR R R R  

2) Inner surfaces 2 and 3 slide before outer surfaces 1 and 4 

2 3 1 4  

3) For the outer surface 1 to slip before the inner capacity deformation 2d  is reached, i.e., the force on face 1 is 

less than the force on face 2 at the capacity deformation, then 

1 2 2
2

f f
eff

WF d F
R

  1 2 2
2eff

WW d W
R

  2 1 2 2effd R  

4) For the outer surface 4 to slip before the inner capacity deformation 3d  is reached, i.e., the force on face 4 is 

less than the force on face 3 at the capacity deformation, then 

4 3 3
3

f f
eff

WF d F
R

  3 4 3 3effd R  

5) For face 4, which has the greatest frictional force, to slip before the capacity deformation of face 1 is reached 

4 1 1
1

f f
eff

WF d F
R

  1 4 1 1effd R  

 

 

,dF du  
1du  

2du  3du  4du  

*
1fK  *

2fK  *
3fK  *

4fK  
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2) Single Friction Pendulum Bearing 

 
 

3) Double Friction Pendulum Bearing 

 

In case of a single sliding surface, the force-

deformation of FPB is 

* * *
1, fdF K du K K  

In case of double sliding surfaces, the force-

deformation of FPB is 

* *

* *
1 4

1,
1 1

f f

dF K du K

K K
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Example) 

 
W = 415.12 kN 

 

Note) In STERA, the frictional bearing capacity is calculated from the initial vertical load and the coefficient of 

friction. Note that the frictional capacity remains the same even if the axial force varies. 
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 F  u  

A 2 3f fF F  0  

B 1fF  *
1 2 2 1 3 3eff effu R R  

C 4fF  **
4 1 3 1 2 2 1 1 3 3eff eff eff eff effu R R R R R  

D 1 1 1
1

dr f
eff

WF d F
R

 4**
1 1 4 1 1 4

1

1 eff
dr eff eff

eff

R
u u d R R

R
 

E 4 4 4
4

dr f
eff

WF d F
R

 4 1
4 1 4 1 2 4

4 1
dr dr eff eff

eff eff

d du u R R
R R
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3.6 Masonry Wall 

 

a) Nonlinear shear spring 

Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure 3-

6-2.  

 
The characteristic values, uyc QQQ ,,  are obtained based on the formulation described in the reference 

(Paulay and Priestley, 1992). 

The procedure to obtain the shear strength is shown below: 

 

  

Figure 3-6-1 Element model for masonry wall 

A 

B 

 

 

A1 A2 

B1 B2 

 

 

 

Figure 3-6-2 Hysteresis model of the nonlinear shear spring 
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(1) Compression strength of masonry prism 

 

Compression strength of diagonal strut is 
 mftZR '        (3-6-1) 

where,  
 mf '  : Compression strength of the masonry prism 
 Z : Width of the diagonal strut (Z = 0.25 d, d is diagonal length) 
 t : Thickness of wall 
 
The compression strength of the masonry prism ( mf ' ) is determined by the following equation (Paulay and 

Priestley, 1992), 

)''(
)''('

'
cbtbu

jtbcb
m ffU

fff
f       (3-6-2) 

bh
j
1.4

       (3-6-3) 

where, 

cbf '  : Compressive strength of the brick 

tbf '  : Tensile strength of the brick (= 0.1 cbf ' ) 

jf '  :  Compressive strength of the mortar 

j  : Mortar joint thickness 

bh  : Height of masonry unit 

uU  : Stress non-uniformity coefficient (=1.5) 

 
Another formula is proposed by Eurocode 6: 

 ' ' '
ba

m cb jf k f f       (3-6-4) 

where, , ,k  : constants provided by the table in Eurocode 6 

 

The shear strength is then obtained as, 
cos'cos mc ftZRV      (3-6-5) 
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(2) Shear strength by sliding shear failure 

 

 
 

The maximum shear stress is obtained from the Mohr-Coulomb criterion: 

0000 tanf      (3-6-6) 

where, 

0  : Cohesive capacity of the mortar beds (=0.04 mf ' ) (Paulay and Priestly, 1992) 
 : Sliding friction coefficient along the bed joint 

  jf '000515.0654.0  (Chen et.al, 2003, 2' ( / )jf kg cm ) 

 0  : Compression stress ( ww ARAW /sin/ ) 

 

The shear strength is 

WAA
A
WAV wW

W
Wff 00    (3-6-7) 

Substituting sin,cos RWRV f   

where  is an angle subtended by diagonal strut to horizontal plane 

 

tan1
cos

tan1cos
sincos

0

0

0

w

w

w

A
R

AR
RAR

     (3-6-8) 

 

Therefore, 

 
tan1

0 w
f

A
V        (3-6-9) 
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(3) Characteristic values of nonlinear skeleton 

 
The shear resistance, yQ , is calculated to be the minimum value between the shear strength by sliding shear 

failure, fV , and the shear strength of diagonal compression failure, cV , that is, 

 
),min( cfy VVQ        (3-6-10) 

 
The shear displacement at the maximum resistance, y , is obtained as (Madan et al.,1997), 

cos
' mm

y
d

       (3-6-11) 

where, 

m'  : Compression strain at the maximum compression stress 

 ( m' =0.0018, Hossein and Kabeyasawa, 2004) 

Initial elastic stiffness is assumed as (Madan et al., 1997) 

yyQk /20        (3-6-12)

 

From Figure 3-6-2, the shear resistance at crack, cQ , is obtained as, 

1
0 yy

c

kQ
Q        (3-6-13) 

where,  is the stiffness ratio of the second stiffness and assumed to be 0.2. 

 

Shear displacement at crack is then obtained as, 

0/ kQcc        (3-6-14) 

 

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004) 

yu QQ 3.0        (3-6-15) 

)01.0(5.3 ymu h       (3-6-16) 

where, mh  is the height of masonry wall. 

 

References: 

 

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN 

WILEY & SONS, INC. 

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of 

Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of Bam 

Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo 

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for 

Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849  
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(4) Modification factors 

 

STERA_3D provides modification factors for stiffness and shear strength in the option menu. 

 

The stiffness modification factor,  , changes the stiffness while maintaining the shear strength in the 

skeletal curve.  

 
The strength modification factor, , changes the strength while maintaining the stiffness in the skeletal 

curve.  

 

 

b) Vertical springs 

For the moment, the vertical springs of the element model in Figure 3-6-1 are assumed to be elastic springs. 

2211 '','' zzzzzz kNkN      (3-6-17) 

2/)( wmz tlEk        (3-6-18) 

where, 

mE  : Modulus of elasticity of masonry prism (=550 mf ' , FEMA 356, 2000) 

t  : Thickness of masonry wall 

wl  : Width of masonry wall 
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3.7 Passive Damper 
 

a) Hysteresis damper 

Hysteresis damper is modeled as a shear spring as shown in Figure 3-7-1.  

 

Different types of hysteresis model are prepared for the force-deformation relationship of the spring. 

 

(1) Bi-linear Model 

 

 

 

 

 

 

 

(2) Normal-trilinear Model 
 

 

 

 

 

 

 

 

Figure 3-7-1 Element model for passive damper 

A 

B 

 

A1 A2 

B1 B2 

 

 

x x x

f f f

yx mx
1k

2k
2k

1 2k k

xx x

1 2f f f 1f 2f

245



(3) Degrading Tri-linear model 

 

 

 

 

 

 

 

 

 

 

 

 

(4) Bouc-Wen model 

 

 

 

 

 

 

 

 

 

(5) Nonlinear Spring model 

 

 

 

 

 

 

 

 

 

Figure 3-7-2 Hysteresis model of the shear spring 
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b) Viscous damper 

Viscous damper is modeled as a shear spring as shown in Figure 3-7-3.  

 

(1) Algorithm for oil damper devise 

 

Figure 3-7-4 shows the Maxwell model with an elastic spring with stiffness, dK  , and a dashpot with 

damping coefficient, C. 

 

 

 

 

 

Figure 3-7-4 Maxwell model 

 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF        (3-7-1) 

where,   kF  : force of the elastic spring 

  cF : force of the dashpot 

  ijF : force between i-j nodes 

 

 

 

 

Figure 3-7-3 Element model for passive damper 
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The force of the elastic spring, kF , is obtained as, 

 )( cijdkdk uuKuKF       (3-7-2) 

where,  ku : relative displacement of the elastic spring 

  cu : relative displacement of the dashpot 

iju : relative displacement between i-j nodes 

 

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-5. 

 

 

 

 

 

 

 

 

Figure 3-7-5 Dashpot element 

The force of the dashpot after the relief point is, 

 ccc QuCF 2        (3-7-3) 

 

Substituting Equations (3-7-2) and (3-7-3) into (3-7-1) 

 cccijd QuCuuK 2)(       (3-7-4) 

When the time interval t is small enough, the velocity at time t can be expressed as, 

 
t
tu

tu c
c

)(
)(        (3-7-5) 

 )()()( ttututu ccc       (3-7-6) 

Substituting above equations into Equation (3-7-4), 

 

d

ccijd
c

K
t

C
QttutuK

tu
2

)()(
)(      (3-7-7) 

The algorithm to obtain the force )(tFij from )(tuij  is as follows: 

1) Evaluate )(tuc  from Equation (3-7-7) 

2) Evaluate )(tuc  from Equation (3-7-6) 

3) Evaluate )(tFij  from Equation (3-7-2) 

 

Fc

uc 
. 

relief point 
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Before the relief point of the dashpot, Equation (3-7-7) will be obtained by changing 0,12 cQCC  

as 

 

d

cijd
c

K
t

C
ttutuK

tu
1

)()(
)(      (3-7-8) 

When the velocity of the dashpot is over the negative relief point, Equation (3-7-7) will be obtained by 

changing cc QQ , 

 

d

ccijd
c

K
t

C
QttutuK

tu
2

)()(
)(      (3-7-9) 

 

In case there is no elastic spring, 

 

Figure 3-7-6 Dashpot element without elastic spring 

)()( tutu cij  

 cccuj QuCFF 2    

 
t
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c
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Therefore, 

 c
ij

ij Q
t

tu
CtF

)(
)( 2       (3-7-10) 

Before the relief point of the dashpot, 

t
tu

CtF ij
ij

)(
)( 1       (3-7-11) 

When the velocity of the dashpot is over the negative relief point, 

 c
ij

ij Q
t

tu
CtF

)(
)( 2       (3-7-12) 
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(2) Algorithm for viscous damper devise 

 

Figure 3-7-7 shows the Maxwell model with an elastic spring with stiffness, dK  , and a dashpot with 

damping coefficient, C. 

 

 

 

 

 

Figure 3-7-7 Maxwell model 

 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF        (3-7-13) 

where,   kF  : force of the elastic spring 

  cF : force of the dashpot 

  ijF : force between i-j nodes 

 

The force of the elastic spring, kF , is obtained as, 

 )( cijdkdk uuKuKF       (3-7-14) 

where,  ku : relative displacement of the elastic spring 

  cu : relative displacement of the dashpot 

iju : relative displacement between i-j nodes 

 

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-8, 

 

 

 

 

 

 

 

 

Figure 3-7-8 Dashpot element 

That is, 

 sgnc c cF C u t u t       (3-7-15) 
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From Equations (3-7-13) and (3-7-14) 

 )()(
)(

tutu
K

tF
ijc

d

ij       (3-7-16) 

Taking time differential and substituting Equation (3-7-15) give 

 )(
)(

)(sgn
)(

/1

tu
C

tF
tF

K
tF

ij
ij

ij
d

ij     (3-7-17) 

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-7-17). 

 

In general, the solution of the differential equation, ),()( tyfty , is obtained by Runge-Kuttta Method as 

follows: 

  32101 22
6
1 kkkkyy nn      (3-7-18) 
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Equation (3-7-17) can be written as 

 d
ij

ijijij K
C

tF
tFtutF

/1
)(

)(sgn)()(     (3-7-19) 

Applying Runge-Kutta Method gives the following algorithm, 

)()(2)(2)(
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In this algorithm, it is assumed as, 

 
2

)()(
)2/(

ttutu
ttu nijnij

nij     (3-7-21) 

 

In case there is no elastic spring, 

 

Figure 3-7-9 Dashpot element without elastic spring 

)()( tutu cij        (3-7-22) 

 sgnuj c c cF F C u t u t      (3-7-23) 
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Therefore, 

( ) ( )
sgn ij ij

uj

u t u t
F t C

t t
     (3-7-25) 
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(3) Algorithm for viscoelastic damper (Kelvin-Voigt model) devise  

 

Figure 3-7-10 shows the Voigt (or Kelvin-Voigt) model with an elastic spring with stiffness, K  , and a 

dashpot with damping coefficient, C. The stiffness of the connection is represented as dK . 

 

 

 

 

 

 

 

 

 

Figure 3-7-10 Voigt (or Kelvin-Voigt) model 
 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF        (3-7-26) 

where,   kF  : force of the connection spring 

  cF : force of the dashpot and spring 

  ijF : force between i-j nodes 

 

The force of the connection spring, kF , is obtained as, 

 )( cijdkdk uuKuKF       (3-7-27) 

where,  ku : relative displacement of the connection spring 

  cu : relative displacement of the dashpot and spring 

iju : relative displacement between i-j nodes 

 

 

 

      

 

 

 

 

Figure 3-7-14 Bi-linear model  
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The force of the dashpot and spring is, 

 2c c c sF Ku C u F       (3-7-28) 

 

Substituting Equations (3-7-27) and (3-7-28) into (3-7-26) 

 2( )d ij c c c sK u u Ku C u F      (3-7-29) 

 

When the time interval t is small enough, the velocity at time t can be expressed as, 

 
t
tu

tu c
c

)(
)(        (3-7-30) 

 )()()( ttututu ccc       (3-7-31) 

Substituting above equations into Equation (3-7-29), 
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( )( ) ( ) c

d ij d c c s
u tK u K K u t u t t C F
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( ) d ij d c s
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K u t K K u t t F
u t C K K

t

    (3-7-32) 

The algorithm to obtain the force )(tFij  from )(tuij  is as follows: 

1) Evaluate )(tuc  from Equation (3-7-32) 

2) Evaluate )(tuc  from Equation (3-7-31) 

3) Evaluate )(tFij  from Equation (3-7-27) 
 

Before the relief point of the dashpot, Equation (3-7-32) will be obtained by changing 2 1, 0sC C F  

as 

 
1

( ) ( )
( ) d ij d c

c

d

K u t K K u t t
u t C K K

t

    (3-7-33) 

When the velocity of the dashpot is over the negative relief point, Equation (3-7-32) will be obtained by 

changing s sF F , 
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    (3-7-34) 
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In case there is no elastic spring, 

 

 

 

 

 

 

 

 

 

Figure 3-7-12 Voigt model without connection spring 
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     (3-7-35) 

Before the relief point of the dashpot, 

 1
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     (3-7-36) 

When the velocity of the dashpot is over the negative relief point, 
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ij ij s
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     (3-7-37) 
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(4) Algorithm for viscoelastic damper (Kelvin-Voigt model) with a nonlinear spring 

In case the viscoelastic damper is connected with a nonlinear friction damper, we assume that the connection 

spring is the friction damper (including elastic element) with the spontaneous stiffness, dK . 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3-7-13 Visco-elastic damper with a friction damper (= Visco-plastic damper) 

 

Since the elastic spring and the dashpot are connected in a series,  

 ijck FFF        (3-7-38) 

where,   kF  : force of the connection spring 

  cF : force of the dashpot and spring 

  ijF : force between i-j nodes 

 

The force of the connection spring, kF , is obtained as, 

 k k d kF t F t t K u      (3-7-39) 

or ( )k d k d ij cF K u K u u       
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where,  ku : relative displacement of the connection spring 

  cu : relative displacement of the dashpot and spring 

iju : relative displacement between i-j nodes 

 

The force of the dashpot and spring is, 

 

 

 

      

 

 

 

 

Figure 3-7-14 Bi-linear model  

 

 2c c c sF Ku C u F       (3-7-40) 

2
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u tF t t F K u t u t t C Q

t
 

2
( )( ) ( ) ( )c

c c c c s
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CF K u t Ku t t F t t F

t
   (3-7-41) 

When the time interval t is small enough, the velocity at time t can be expressed as, 

 
t
tu

tu c
c

)(
)(        (3-7-42) 

 )()()( ttututu ccc       (3-7-43) 

From Equations (3-1-84)  

 ( )k d k d ij cF K u K u u      (3-7-44) 

From the condition k cF F  and Equation (37-41) 

 2( ) ( ) ( ) ( )d ij c c c c s
CK u u K u t Ku t t F t t F

t
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F t t K u t Ku t t F
u t CK K
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   (3-7-45) 
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The algorithm to obtain the force )(tFij  from )(tuij  is as follows: 

1) Evaluate )(tuc  from Equation (3-7-45) 

2) Evaluate )(tuc  from Equation (3-7-43) 

3) Evaluate k ij cu u u  

4) Evaluate )(tFij  from the bilinear hysteresis model of the friction damper (including elastic 

element). 
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(5) Algorithm for viscoelastic damper (4-element model) devise  

 

5-1) Four-element model 

Reference:  
Yutaka Nakamura, Tetsuya Hanzawa, Takeshi Nomura and Tomokazu Takada, "Performance-Based 
Placement of Manufactured Viscoelastic Dampers for Design Response Spectrum", frontiers in Build 
Environment, 27 May 2016, Sec. Earthquake Engineering 
Volume 2 - 2016 | https://doi.org/10.3389/fbuil.2016.00010 

 

A mechanical model for the VE material comprises two non-linear dashpot elements and two non-linear 

spring elements as shown in the figure below: 

 

 
 

The damping coefficients C1, C2 and the stiffness K1, K2 are expressed as, 

  

  (3-7-46) 

where, : shear strain,  

As: area of the VE material,  

d: thickness of the VE material,  

Te: temperature 
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5-2) Equivalent Stiffness and Damping of 4-element model 

 

 

 

 

 

 

 

 

 =  =  =  =  

 = =  = =  = =  = =  

 

From = +  = + = + = 1 + 1 = +
 

= + = ( )+ = ++  

From  = + +  = + + = + ++ +  

= + + + + +   

= + + + + + = +  

 

Therefore, Equivalent stiffness , Equivalent damping coefficient , and Equivalent damping factor  

are: = + + ,   = + + ,   = 2 = 2 ( + ) ++ ( + ) 

(3-7-47) 

 

 

       

 

 

 

 

260



5-3) Constitutive equation of 4-element model 

 

 

 

 

 

 

 

 

 ( ) = ( )         ( ) = = = ( ) 

( ) =  = ( ) ( ) 

 

From = +  ( ) = + ( ) = + + ( ) 

( ) = 1 + + ( ) 

= ( ) ( )       (3-7-48) 

( ) = ( ) +        (3-7-49) 

 ( ) = ( ) +     ( ) = =  

( ) = = ( ) ( )
 ( ) = ( ) + ( ) + ( )       (3-7-50) 

 

The algorithm to obtain the force  from  is as follows: 

4) Evaluate  from Equation (3-7-48) 

5) Evaluate ( ) from Equation (3-7-49) 

6) Evaluate  from Equation (3-7-50) 
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5-4) Constitutive equation of 4-element model with a nonlinear spring 

 

 

 

 

 

 

 

 

 

 

Since the spring and the 4-element model are connected in a series,  
 ( ) = ( ) = ( ) 

where,    : force of the connection spring 

    : force of the 4-element model 

    : force between i-j nodes 

The force of the connection spring, , is obtained as, 
 ( ) = ( ) + = ( ) +    (Bilinear)   (3-7-51) 

where,   : relative displacement of the connection spring 

 = ( )  = = = ( ) 

( ) =  = ( ) ( ) 

 

From = +  ( ) = + ( ) = + + ( ) 

( ) = 1 + + ( ) 

= + { ( ) ( )} 

         (3-7-52) ( ) = ( ) +  

 

 

 

       

 

 

 

 

,  

,  
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 ( ) = ( ) + (Bilinear)     (3-7-53) = = = + { ( ) ( )} = { ( ) + ( )} 

where  = +  

= =  

 

From  = + +  = + + = ( ) + + { ( ) + ( )} +  

From  = =  ( ) = + + + ( ) + ( ) ( )= ( ) +  + + + + ( ) + ( ) ( ) = ( ) +  

= ( ) ( ) + ( ) + ( )+ + +  

         (3-7-54) 

 

The algorithm to obtain the force  from  is as follows: 

1) Evaluate  from Equation (3-7-54) 

2) Evaluate  from Equation (3-7-52) 

3) Evaluate  and update  from Equation (3-7-51) 

4) Evaluate  and update  from Equation (3-7-53) 
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Example) 

 

Properties of viscoelastic material 

 = 5.00 mm 

        = 5600.0 mm2 

     = 20.0  

The damping coefficients C1, C2 and the stiffness K1, K2 are expressed as, 

    
 

 
 

 

Displacement (11Hz, 15mm)

Force of Viscoelastic damper (N) 

mm 

s 
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c) Vertical damper 

 

In cases where the damper is installed at an oblique angle, 
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1) From nodal displacement to damper displacement 

1
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2) Damper force to nodal force 

When the damper is a viscous damper, =   = | | sgn( )  

 

The unit vector along the damper axis (direction vector) is = ( ), ( ), ( ) = ( , , )  

where = 1 ( ) = 1 ( + ) 

= 1 ( ) = 1 +  

= 1 ( ) = 1 ( + ) 

 

 
The force components in the x, y, z directions are expressed as, 

=   

where,  is the axial force of the damper. 
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3.8 Ground Spring 

 

3.8.1 Soil structure interaction 

a) When building and foundation on ground are subjected to an earthquake excitation, the system can be 

divided into two parts: b-1) building and foundation with interaction forces and b-2) ground with zero-mass 

foundation subjected to the reaction of interaction forces and an earthquake excitation, which can be 

divided further into c-1) zero-mass foundation subjected to an earthquake excitation (kinematic 

interaction) and c-2) zero-mass foundation subjected to the reaction of interaction forces (inertia 

interaction). 

 

 

c-1) Kinematic interaction 

c-2) Inertia interaction 

b-1) Building and foundation 

b-2) Ground with zero-mass foundation Input ground motion 

a) Building and foundation 

Ground 

G 

G 

G 

G 
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In case of c-2), the force-displacement relationship is written as, 

G H HR G

G HS R G

P K K u
M K K

      (3-8-1) 

where ,G GP M  are sway and rocking forces corresponding to the interaction forces between the 

superstructure (building-foundation) and the ground, ,G Gu  are sway and rocking displacements. This 

stiffness matrix is called “dynamic impedance matrix”. 

 

If we neglect the coupling between sway and rocking degrees of freedom, the dynamic impedance matrix is 
evaluated separately from the d-1) sway impedance HK  and d-2) rocking impedance RK  as follows: 

0
0

G GH

G GR

P uK
M K

      (3-8-2) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c-2) Inertia interaction 

d-1) Sway 

d-2) Rocking 

G H HR G
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P K K u
M K K
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This corresponds to the Sway-Rocking model as shown below: 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to note that the input ground motion to an embedded foundation is smaller than the input 

ground motion in the free field due to the influence of the embedding of the foundation. This effect is called 

“kinematic interaction”. 

 

 

 

 

 

c-2) Inertia interaction 

G 

,G GM  

,G GP u  

c-2) Sway-Rocking model 

G 

,G GM  

,G GP u  

HK  

RK  

Input ground motion 

RK  

HK  

Finally, the soil-structure interaction is 

implemented adding the sway and rocking 

springs at the bottom of superstructure. 

Free filed Embedded foundation 

270



3.8.2 Cone model to calculate the static stiffness 
The cone model is proposed by Wolf [1994] for determining the dynamic stiffness of a foundation on the 

ground. The foundation is assumed as an equivalent rigid cylinder and only vertically incident shear wave 

is considered. In case of the stratified ground, a simplified formulation is proposed by IIba et.al. [2000] 

without considering the reflection and refraction coefficients at the boundary of the soil layer to obtain the 

static stiffness. The following formulation is adopted in the STERA_3D software. 

 

Reference:  

1) John P Wolf, Foundation Vibration Analysis Using Simple Physical Models, Prentice Hall, 1994 

2) Iiba M., Miura K and Koyamada K, "Simplified Method for Static Soil Stiffness of Surface Foundation", 

Proceedings of AIJ Annual Meeting, 303-304, AIJ, 2000. (in Japanese) 

 

a) Sway spring 

Consider a semi-infinite cone whose area increases in the depth direction. First, we show the calculation 

method of the horizontal ground spring (sway spring) for the rectangular foundation 2 2b c  (ground 

surface foundation or embedded foundation). The equivalent radius of a circle having the same area is 

obtained as 0 2 bcr . 

 

 

 

 

 

 

 

 

 

The forces of the minute portion at the distance z from the apex of the cone are: 

Shear force at the upper surface  

2 2 uQ r G r G
z

      (3-8-3) 

Shear force at the lower surface 

2 2 2
2

21 1dQ dz u dz u uQ dz r G u dz r G dz
dz z z z z z z

 

         (3-8-4) 

Considering the static case ignoring the inertial force acting on the minute part, from the balancing of 

forces, 

02r  
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 0dQQ dz Q
dz

 

 
2 2

2 2
21 0dz u u ur G dz r G

z z z z
 

 
2 22 2 2

2 2 21 2 0dz u u u u dz dz u udz dz dz
z z z z z z z z z

 

 Ignoring high-order small amount terms 
 

2

2

2 0u u
z z z

       (3-8-5) 

The solution to this equation can be expressed as follows: 

 
Au B
z

       (3-8-6) 

where A and B as undetermined coefficients. 

 

Assuming that the displacement on the ground surface is U and the displacement at the depth d is 0 as 

boundary conditions, 

 , 0A AU B B
l d

      (3-8-7) 

From this, the coefficient A is 

 
ldA U

d l
       (3-8-8) 

Let 0Q  be the shear force of the ground surface 

 2 2 2
0 0 0 02

u A dQ r G r G r G U
z l d l l

   (3-8-9) 

Therefore, the horizontal spring HK  on the ground surface is 

 20
0H

Q dK r G
U d l l

     (3-8-10) 

Assuming that d is infinite, 

 
2

0
H

r GK
l

       (3-8-11) 

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained 

theoretically from the following formula. 

08
2H
GrK        (3-8-12) 

If the two springs are set to be equal, the distance l  from the apex of the cone to the ground surface is 

obtained as follows: 
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2

0 0
0

28
2 8
Gr r G l r

l
    (3-8-13) 

 

In case of the stratified ground, consider a truncated cone of thickness id  from the i-th layer of stratified 

ground and iz  be the coordinate of the bottom of the i-th layer. The radius of the truncated cone ir  at 

depth iz  is then calculated as follows from the geometric relationship. 

 0
0

i
i

zr r
z

       (3-8-14) 

The horizontal spring on the upper surface of this truncated cone is 

2 2
2 1 1 0 1 1

1 0
1 0 1 1 0 1 0 1

i i i i i i i i
H i i i

i i i i i i i

z d z z r G G z zK r G r G
z d z z z z z G z z z

  (3-8-15) 

The horizontal spring hbK  at the base bottom position is obtained as a synthetic spring in which 

horizontal springs of each layer are connected in series. 
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1 1n

i
ihb HK K

       (3-8-16) 

However, in the bottom layer, 
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 (3-8-17) 

Finally, the horizontal ground spring hbK  is obtained as, 

 1hb h hK K        (3-8-18) 

where  
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b) Rocking spring 

Rotational spring can be obtained as follows, similar to the method for determining horizontal spring. For 

the rectangular foundation 2 2b c  (ground surface foundation or embedded foundation, 2b  is the 

length in rotational direction), the equivalent radius of a circle having the same moment of inertia is 

obtained as 
3

4
0

2 2
3r

b c
r . 

)  The moment of inertia of a circle 4
04c rI r  

 The moment of inertia of a rectangular
32 2

12b

b c
I  

 

 

 

 

 

 

 

 

The forces of the minute portion at the distance z from the apex of the cone are: 

Moment at the upper surface  
4
0

4
rrM EI E

z z
      (3-8-19) 

Moment at the lower surface 

4 4 2
4

0 0 21 1
4 4r r

dM dz dzM dz r E dz r E dz
dz z z z z z z

 

         (3-8-20) 

Considering the static case ignoring the inertial force acting on the minute part, from the balancing of 

forces, 

 0dMM dz M
dz

 

 
4 42
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0 21 0

4 4
r

r
rdz ur E dz E

z z z z
 

 Ignoring high-order small amount terms 
 

2

2

4 0
z z z

       (3-8-21) 

The solution to this equation can be expressed as follows: 

M  

MM dz
z
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 3

A B
z

       (3-8-22) 

where A and B as undetermined coefficients. 

 

Assuming that the rotational displacement on the ground surface is  and the displacement at the depth d 

is 0 as boundary conditions, 

 33 , 0
r r

A AB B
l l d

     (3-8-23) 

From this, the coefficient A is 

 
3 3

3 3
r r

r r

l d l
A

l d l
      (3-8-24) 

Let 0M  be the shear force of the ground surface 

 
34 4 4

0 0 0
0 4 3 3

33
4 4 4

rr r r

r r r r

l dr r ru AM E E E
z l l d l l

 (3-8-25) 

Therefore, the rotational spring RK  on the ground surface is 

 
34

0 0
3 3

3
4

rr
R

r r r

l dM rK E
l d l l

    (3-8-26) 

Assuming that d is infinite, 

 
4
03

4
r

R
r

r EK
l

       (3-8-27) 

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained 

theoretically from the following formula. 

3
08

3 1
r

R
GrK        (3-8-28) 

If the two springs are set to be equal, the distance rl  from the apex of the cone to the ground surface is 

obtained as follows: 

 
23 4 4

0 0 0
0

9 18 3 3 2 1
3 1 4 4 16

r r r
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Gr r E r E G l r
l l

 (3-8-29) 
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In case of the stratified ground, consider a truncated cone of thickness id  from the i-th layer of stratified 

ground and riz  be the coordinate of the bottom of the i-th layer. The radius of the truncated cone rir  at 

depth riz  is then calculated as follows from the geometric relationship. 

 0
0

ri
ri r

r

zr r
z

       (3-8-30) 

The rotational spring on the upper surface of this truncated cone is 
34 4 3 3

11 0 1 1
3 3 3 33

0 1 0 11 1 1

3 3
4 4

ri ii ri r i ri ri
R i

r r ri riri i ri ri

z dr r E E z zK E
z E z z zz d z z

  (3-8-31) 

The rotational spring rbK  at the base bottom position is obtained as a synthetic spring in which rotational 

springs of each layer are connected in series. 
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1 1n

i
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       (3-8-32) 

However, in the bottom layer, 

4 3 3 4 3
1 0 1 1 0 1 1
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R n
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 (3-8-33) 

Finally, the horizontal ground spring rbK  is obtained as, 

 1rb r rK K        (3-8-34) 
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3.8.3 Embedded foundation 

 

 

 

 

 

 

 

 

 

 
In case of embedded spread foundation, the resistances at the side of the foundation ,he reK K  can be 

expected in addition to the resistances ,hb rbK K  at the base of the foundation. That is, 

h hb he

r rb re

K K K
K K K

       (3-8-35) 

where 

0

e he
he he hb

hb

D GK K
r G

      (3-8-36) 

3

0 0

2.3 0.58e e he
re re rb

r r hb

D D GK K
r r G

    (3-8-37) 
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he hbm

i
i

G H K
G G

rH
    (3-8-38) 

eD  is the depth of the foundation. he  and re  are the earth pressure reduction coefficients of 

horizontal and rotational directions at the side of the foundation and they are set to 0.5 when considering 

only the side receiving the reaction force from ground at the time of the earthquake. m  is the number of 

soil layers from the surface to the bottom at the side the foundation where the earth pressure acts.  is the 

average Poisson's ratio of the ground under the foundation base. The damping at the embedded part is not 

considered. 

 

,hb rbK K  ,he reK K  

277



3.8.4 Radiation damping 

   The static stiffness obtained by the cone model alone can not express the radiation damping that the 

energy of ground shaking spreads to a distance.  

   To evaluate the radiation damping, we consider a semi-infinite earth column with the same area of the 

foundation where a shear wave travels downward when the foundation sways harmonically in a horizontal 

direction. 

   The wave travels in the earth column can be expressed as the solution of the wave equation. 

2 2
2

2 2 ,s s
u u GV V

t z
      (3-8-39) 

where G  is the shear modulus of the soil,  is the density of the soil, and sV  is the shear wave 

velocity. 

When the foundation sways harmonically as iptue , the solution of the wave equation is 

   /, sip t z Vu z t ue (3-8-40) 

The shear force at the bottom of the foundation is, 

 0
ipt

z s
s s

u GA GA du duQ GA iupe V A
z V V dt dt

   (3-8-41) 

where A  is the area of the foundation. Therefore, the damping force by the radiation is equivalent as the 

viscous damping of a dashpot with a damping coefficient 
 H sC V A        (3-8-42) 

 

The radiation damping of a rocking motion is expressed as the similar formula 

 R sC V I        (3-8-43) 

where  
4

4
rI  is the second moment of inertia for a circular foundation with the radius r  

 
3.4
1

 is the coefficient for vertical wave velocity, where  is the Poisson’s ratio 
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In case of the stratified ground, we can use the following formula for the radiation damping 
 H e eC V A        (3-8-44) 

 R e e eC V I ,  
3.4
1e

e

    (3-8-45) 

where e  is the average density, eV  is the average shear wave velocity and e  is the average shear 

modulus defined by the weighted average by depth of layers under the basement as 

 1

1

n

i i
i

e n

i
i

d

d
,  1

1

n

i i
i

e n

i
i

V d
V

d
,  1

1

n

i i
i

e n

i
i

d

d
   (3-8-46) 

 

3.8.5 Complex stiffness with material damping 

 

The damping effect of the soil material can be considered by setting the shear modulus to the following 

complex shear modulus.  

 * 1 2G G ih         (3-8-47) 

where h is the damping factor of the soil. As a result, the dynamic stiffness obtained from the cone model 

becomes also complex value as, 

 * ' 1 2H H H H HK K iK K ih  : sway spring 

 * ' 1 2R R R R RK K iK K ih  : rocking spring   (3-8-48) 

Furthermore, the damping coefficient is obtained from the imaginary part of the complex stiffness under the 

periodic vibration of the circular frequency  

 K x C x   assuming i tx ae  K i C x  

From the equivalent condition, 

 ' 1 2K i C x K iK x K ih x  

 Therefore, 
' 2K hKC      (3-8-49) 

 

STERA_3D calculates the circular fr  

 1
1

2
T

       (3-8-50) 

where 1T  is the first natural period of the structure with the ground spring (real part). 
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3.8.6 Impedance matrix 

 

It is known that radiation damping is likely to occur in a frequency band higher than the dominant 

frequency of the ground ( Gf ), and the effect is greater at higher frequencies. Therefore, the damping is 

evaluated separately for a lower frequency side and a higher frequency side than the dominant frequency. 
 

a) In case of Gf f  G  for Sway spring and 2 Gf f  2 G  for Rocking spring 

Considering material damping only, 

G H G H GP K u C u , 
' 2K hKC     (3-8-51) 

G R G R GM K C       (3-8-52) 
where  

,H HK C   : stiffness and damping of sway spring 

,R RK C   : stiffness and damping of rocking spring 
 

b) In case of Gf f  G  for Sway spring and 2 Gf f  2 G  for Rocking spring 

Considering both material damping and radiation damping, 

'G H G H H GP K u C C u      (3-8-53) 

'G R G R R GM K C C      (3-8-54) 

where  
', 'H RC C  : radiation damping for sway and rocking 

 

   To avoid the discontinuous of damping, we modify the formula as 

' , G
G H G H H H G H

f fP K u C C u
f

   (3-8-55) 

2' , G
G R G R R R G R

f fM K C C
f

   (3-8-56) 

 

In a matrix form 

0 ' 0
0 0 '

G G GH H H H

G G GR R R R

P u uK C C
M K C C

 (3-8-57) 
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3.8.7 Pile foundation 

 

Now we discuss the Sway and Rocking springs for the foundation with piles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a) Vertical stiffness of a single pile 

The vertical stiffness of a single pile is obtained from the follow formula: 

2 2

2 2

1 1

1 1

L L
B

V L L
B

k e EA e
K EA

k e EA e
,  Sk

EA
  (3-8-58) 

where, 

E : Young’s Modulus of the pile, A : Area of the pile, L : Length of the pile 

Sk : Vertical spring of the soil surrounding the pile, Bk : Vertical spring at the bottom of the pile 

 

Inertia interaction 

1) Sway 

2) Rocking 
G 

,G GM  

,G GP u  

G 
,G GP u  

G 

,G GM  

,G GP u  
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a-1) Equilibrium condition of the vertical forces in a pile 

The equilibrium condition of the vertical forces in a small segment is 
0S zdP k u dz        (3-8-59) 

The axial strain in the segment is obtained as 

 z zdu P
dz EA

       (3-8-60) 

Therefore 

 
2

2
z

S z
d udP EA k u

dz dz
      (3-8-61) 

The solution of this second order differential equation is 

 1 2
z z

zu c e c e ,  Sk
EA

     (3-8-62) 

Also 

 2 1
z z

zP EA c e c e       (3-8-63) 

Setting the boundary conditions as 0zP P  at 0z  and z Lu u  at z L , 

0 2 1P EA c c       (3-8-64) 

1 2
L L

Lu c e c e       (3-8-65) 

Therefore, the coefficients 1c  and 2c  are obtained as 

0P   

LP   

0u   

Lu   

zu   zu   

z zu du   

dz   

zP   

z zP dP   

S zk u dz   
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L
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L L

EA u P ec
EA e e

, 0
2

L
L

L L

EA u P ec
EA e e

   (3-8-66) 

The force at the bottom of the pile LP  is 

 2 1
L L

LP EA c e c e       (3-8-67) 

From the relationship L L Bu P k , 

 02 P
L L L L L

P

K PP
K e e EA e e

    (3-8-68) 

and 

 02
L L L L L

P

Pu
K e e EA e e

    (3-8-69) 

The displacement at the head of the pile is 
 0 1 2u c c        (3-8-68) 

Therefore, the stiffness of the vertical spring at the head of the pile is 
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  (3-8-69) 
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a-2) Vertical spring of the soil surrounding the pile 
The vertical spring of the soil surrounding the pile Sk  is obtained as the friction resistance of soil 

surrounding the soil (Randolph and Wroth, 1978). 

 
(a) Concentric cylinder around loaded pile   (b) Stresses in soil element 

 

Reference: Randolph M.F and Wroth C.P, “Analysis and deformation of vertically loaded piles”, Journal of 

Geotechnical Engineering 104(12): 1465-1487. 1978. 

From the equilibrium condition of vertical forces 

0
2 2

y
y y

dr drr dr d dy rd dy dy r d dr r d dr
r y

  

         (3-8-70) 

Neglecting higher order 

0yr
r

r y
      (3-8-71) 

Assuming the stress change along the depth y y  is negligible, the second term will be zero. Then, 

0
r

r
       (3-8-72) 

Integrating from the pile radius 0r  to r , 

0
0 00 0

r

r
d r r r r r  

0 0 0 0r r rr
r r

      (3-8-73) 

Assuming the deformation along the radius du  is smaller than the deformation along the depth dw , the 

shear stain is 

0 0r ru w dw
z r dr G r rG r

    (3-8-74) 
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The vertical shear deformation is obtained by integrating from 0r  to mr , 

0

0 0
0 0

0

1 lnmr m
S r

r rw r dr
rG G r

     (3-8-75) 

Randolf and Worth proposed the following empirical formula for the radius mr  

2.5 1mr L        (3-8-76) 

The vertical force around the pile is calculated as 

 0 0
0

22
ln S

m

GP r w
r r

     (3-8-77) 

Therefore, the vertical spring of the soil surrounding the pile Sk  is 

 
0

2
ln

e
S

m

Gk
r r

 ,  2.5 1m er L     (3-8-78) 

where,   

1

1 n

e i i
i

G G d
L

: average shear modulus,  
1

1 n

e i i
i

d
L

: average Poisson ratio 

 

 

a-3) Vertical spring at the bottom of the pile 
The vertical spring at the bottom of the pile Bk  is obtained as a static impedance of circular 

foundation as, 

03
8 1

B
B

B

G rk        (3-8-79) 

where, 
 BG : shear modulus of the soil at the bottom of the pile 

 B : Poisson ratio of the soil at the bottom of the pile 
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b) Horizontal stiffness of a single pile 

 

b-1) Horizontal stiffness of a single pile 

 

 

 

 

 

 

 

 

 

 

The flexural deformation of the infinite pile under horizontal load at the top of the pile is 
4

4 0d yEI p x
dx

      (3-8-80) 

where p x  is the reaction force of the soil.  

Assuming 

 hp x k By        (3-8-81) 

where B  is the width of the pile.  

The solution is expressed as 

 
1 1 1 1

4

sin cos sin cos

4

x x

h

y e A x B x e C x D x

k B
EI

  (3-8-82) 

Since the deformation in infinite depth is zero, that is , 0x y , 

 1 1 0A B        (3-8-83) 

In case of fixed pile head, 

 1 1
0

0 0
x

dy C D
dx

  1 1C D    (3-8-84) 

The horizontal force at the pile head is 

 0H Q        (3-8-85) 

Therefore, 
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  (3-8-86) 
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The horizontal deformation of the pile is 

 3 sin cos
4

xHy e x x
EI

     (3-8-87) 

The deformation of the pile head is 

 34
Hy

EI
       (3-8-88) 

Therefore, the horizontal stiffness is 

 
1/4 3/434 4h hK EI EI k B      (3-8-89) 

 

Francis (1964) proposed the following formula for the horizontal ground spring per unit length of a 

single pile: 

 
1/124

2

1.3
1

S S
fS h

S P P

E E Bk k B
E I

      (3-8-90) 

where 
 PE : Young’s modulus of a pile, PI : Moment of inertia of a pile 

 SE : Young’s modulus of soil,  P : Poisson ratio of soil 

 

This formula is based on the study by Biot (1937) with respect to the ground spring against bending of 

an infinite beam on ground and is modified by Visic (1961). Francis extended this concept to the pile 

considered that there is ground on both sides of the beam and doubled the ground stiffness. 

 
Reference:  

1) Francis A. J, Analysis of Pile Groups with Flexural Resistance, Journal of the Soil Mechanics and 

Foundations Division, 1964, Vol. 90, Issue 3, Pg. 1-32 

2) Biot, M. A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech., 1937, 4, 1, Al-A7 

3) Vesic A.B, Bending of beams resting on isotropic elastic solid, Journal of the Engineering Mechanics 

Division, 1961, Vol. 87, Issue 2, Pg. 35-54 
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b-2) Horizontal damping of a single pile 

Gazetas proposed the following formula for the horizontal damping per unit length of a single pile: 

 2gS S L Sc B V V   (3-8-91) 

where 
3.4
1

S
L

S

VV :  Lysmer analog wave 

This damping expresses the radiation damping 

in both directions of the pile. 

 

 

 

 

Reference: Gazetas, G. and Dobry, R, Horizontal Response of Piles in Layered Soils, J. Geo tech. Engrg. 

Div.,ASCE, Vol.110, pp.20-40, 1984 

 

b-3) Ground spring and damping coefficient between multiple layers 

The ground spring and damping coefficient between multiple layers can be calculated by multiplying 

the layer thickness of each layer and averaging as 

 11' 0.5fSi i fSi ifS ik k H k H      (3-8-92) 

 11' 0.5gSi i gSi igS ic c H c H      (3-8-93) 

 

 

P wave 

S wave 

Pile 
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c) Impedance of group piles 

In case of group piles, the impedance of the foundation can not be obtained from the simple addition 

of the impedances of individual piles because of the interaction of piles.  

     

 

 

 

 

 

 

 

 

 

c-1) Group effect in horizontal direction (stiffness) 

    The horizontal stiffness of group piles is obtained from the horizontal stiffness of a single pile as, 

 HG P H HSK N K       (3-8-94) 

where 

 HGK : horizontal stiffness of group piles, HSK : horizontal stiffness of a single pile 

PN : number of piles, H : coefficient of group effect  

The following formula is adopted for STERA_3D as the coefficient of group effect for horizontal ( x ) 

direction, 
0.540.43 0.590.3 0.740.4 2 2

S BS B
Hx x yS B N N   (3-8-95) 

where 

 S : distance between piles in x-direction, B : diameter of pile,  

xN , yN : number of piles in x-direction and y-direction 

The horizontal stiffness of a single pile is obtained from Eq. (3-8-89) as 

 
1/4 3/44HS P P SK E I k       (3-8-96) 

where 

 Sk : the stiffness coefficient of a single pile under homogenous ground 

The horizontal stiffness of group piles  

 
1/4 1/43/4 3/44 4HG P H HS P H P P S P P P GK N K N E I k N E I k  (3-8-97) 

4/3
G P H Sk N k        (3-8-98) 

 

G 
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     For the horizontal damping, the group effect is assumed negligible, and the horizontal damping of 

group piles is obtained as, 

 HG P HSc N c        (3-8-99) 

where 

 HGc : damping coefficient of group piles, HSc : damping coefficient of a single pile 

 

    In evaluating the horizontal ground stiffness of the group pile HGK  in layered ground, it is necessary 

to determine the value of the stiffness coefficient Gk  which represents the average stiffness coefficient in 

layered ground. The following iterative procedure is used to calculate Gk . 

 

 

 

 

 

 

 

 

Step. 1   Set the initial value of Gk  as 

   Gk  = average of Gik  in the surface layer (< 5B ) 

where 4/3
Gi P H Sik N k : horizontal stiffness of group pile at i-th layer from Eq.(3-8-89) 

Step. 2   The flexural deformation of a pile under the horizontal load P  at the top is approximated by 

  3 sin cos
4

x

P P P

Pu e x x
N E I

,  4

4
Gk
EI

 (3-8-100) 

The horizontal stiffness at the top can be calculated by, 

  2
0

Gi i
HG

k u
K

u
      (3-8-101) 

Step. 3 Update Gk  as 

  
4/3 1/4

2 4G HG P P Pk K N E I     (3-8-102) 

 

Step. 4 Go back to Step 1 until 2HG HGK K . 

P  

0 0u u  

iu  

1iu  
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c-2) Group effect in horizontal direction (damping) 

    The damping effect of the soil material is considered as 

 * 1 2Gi Gi Gik k ih        (3-8-103) 

where Gih  is the damping factor of the soil in i-th layer. The horizontal damping at the top of group piles 

can be calculated by, 

 
0

Gi i
HG

h u
h

u
       (3-8-104) 

Therefore, the imaginary part of the horizontal stiffness is 
 ' 2HG HG HGK h K  

 

    In the same way, the horizontal radiation damping at the top of group piles can be calculated by  

 
0

Gi i
HG

c u
c

u
       (3-8-105) 

where  Gi p Sic N c  

 

c-3) Group effect in rocking direction (stiffness) 

     The group effect in rotational direction is assumed negligible and the coefficient of group effect is 

one. Therefore, the rotational stiffness is calculated from the vertical stiffness of individual pile as 

 2

1

m

RGx Vi i
i

K K y : around x-axis     (3-8-106) 

 2

1

m

RGy Vi i
i

K K x : around x-axis     (3-8-107) 
where 
 ,i ix y  : distance from the center of ration in ,x y  directions 

 

c-4) Group effect in rocking direction (damping) 

    In case of rocking direction, the damping effect of the soil at the bottom of the pile is considered 

dominant.  
 RG bh h         (3-8-108) 

where  bh : damping factor of the soil at the bottom of the pile 

Therefore, the imaginary part of the rocking stiffness is 

 ' 2RG RG RGK h K        (3-8-109) 
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3.8.8 Equivalent period and damping factor considering soil structure interaction 

 

a) Equivalent period 

 

 

 

 

 

 

 

 

 

Force and deformation 

 

 

 

 

 

 

Stiffness 

 

 

 

 

Period (mass of foundation is ignored) 
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B BF K   

S SF K  

1 1B S B SF K K  2

R R R
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b) Equivalent damping 

 

b-1) Equivalent damping for material damping 

Force including damping force is 

 F C K  

For a harmonic excitation i tae  

 i  
Then 

 1 1 2CF K i K hi
K

 

where h is the damping ratio 

 
2

Ch
K

 

Defining the viscous damping ratio separately for each dashpot, 

 
2

B B
B

B

Ch
K

, 
2

S S
S

S

Ch
K

, 
2

R R
R

R

Ch
K

 

 

This is the case to define the damping force to be independent to the frequency of excitation.  

This type of damping is called “material damping”. 

 

Total complex stiffness will be 

2

1 1 1 1
1 2 1 2 1 2 1 2B B S S R RK hi K h i K h i K H h i

 

Using the relationship 

2

1 1 2 1 2 1 2
1 2 1 2 1 2 1 4

hi hi hi
hi hi hi h

 

Then 

 2

1 1 1 11 2 1 2 1 2 1 2B S R
B S R

hi h i h i h i
K K K K H

 

From the real part 

 2

1 1 1 1

B S RK K K K H
 

From the imaginary part 

 
22 2

2
SB R

B S R B S R
B S R

TT TK K Kh h h h h h h
K K K H T T T
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b-2) Equivalent damping for viscous damping 

Force including damping force is 

 22C KF C K m m h
m m

 

For a harmonic excitation iptae  

 2 22 1 2 pF m h pi m h i  

This is the case to define the damping force to be dependent to the frequency of excitation.  

This type of damping is called “viscous damping”.  

 

Total complex stiffness will be 

2 2 22

1 1 1 1

1 2 1 2 1 21 2B B R RS S
B RS

p p ppm h i m h i m h im h i

Using the relationship 

1 1 2
1 2

ph i
ph i

 

Then 

2 2 2 2

1 1 1 11 2 1 2 1 2 1 2B S R
B B S S R R

p p p ph i h i h i h i
m m m m

 

From the real part 

 2 2 2 2

1 1 1 1

B S R

  2

1 1 1 1

B S RK K K K H
 

From the imaginary part 

 2B S R
B B S S R R

p K p K p K ph h h h
K K K H

 

In case of the resonance frequency,  p  

 
33 3

B S R
B S R

h h h h  

or 

33 3
SB R

B S R
TT Th h h h

T T T
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4. Freedom Vector 

 

4.1 Node freedom 

 

Each node has six degrees of freedom and the freedom number is defined as shown in the figure below.  

 
4.2 Freedom vector 

 

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained 

freedom is set to be zero. For the structure in the figure below, the freedom vector has zero components for 

the fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number 

of freedom of the structure is 8×4 = 32. 

 

Figure 4-2-1 Example of the freedom vector 

X 

Z 

Y 

Figure 4-1-1 Global coordinate 

1 

2 
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4 
5 

6 

X 

Z 

Y 

X 

Z 
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(a) lateral and rotational displacement (b) shear deformation of connection 

32

25
24

17
16

9
8

1
0

0
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Node 1 
| 

Node 4 

Node 5 

Node 6 

Node 7 

Node 8 

shear deformation of connection 
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4.3 Dependent freedom 

 

(1) Rigid floor assumption 

 

In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore, 

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the 

same floor. 

 
 

For example, the in-plane freedoms at the node A in Figure 4-3-2 are expressed by the in-plane freedoms at 

the center of gravity G as follows: 

zG

yG

xG

xA

yA

zA

yA

xA

u
u

l
l

u
u

100
10
01

   (4-3-1) 

 

G: center of gravity 

xGu  
zG  

yGu  

G 

xAu  
zA  

yAu  

A 

G 

A 

xAl  
yAl  

Figure 4-3-2 Rigid floor assumption 

Figure 4-3-1 In-plane and out-of-plane freedom 

1 

2 

6 

3 

5, 8 
4, 7 

(a) In-place freedoms                 (b) Out-of-plane freedoms 
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In case of the structure in the figure below, in addition to the original nodes, new nodes for the center of 

gravity are defined as “Node 5” and “Node 10”. Under the rigid floor assumption, the freedom vector has 

zero components for the in-plane freedoms at the nodes except the center of gravity. Therefore, the total 

number of independent freedom is 23. 

 

 

Figure 4-3-3 Example of the freedom vector with rigid floor assumption 
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8 9 

Node 1-5 
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23 
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Node 8 
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(2) Including wall element 

 

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure 

4-3-4, the rotation angles in the wall panel plane, 1y  and 2y , are dependent to the vertical 

displacements, 1z  and 2z . Also, the horizontal displacement in the wall panel plane, 2xu , is 

dependent to the displacement, 1xu . The connection is assumed to be rigid. 

 

In a matrix form; 

2

1

2

2

1

1

/1/10
/1/10
001

z

z

x

y

y

x u

ww
ww

u
   (4-3-2) 

In case of Y-direction wall, the relationship can be written as; 

 
 

1yu  

1 

2 

2yu  

1z  

2z  

1x  

2x  
2

1

2

2

1

1

/1/10
/1/10

001

z

z

y

x

x

y u

ww
ww

u
 (4-3-3) 

w  

Figure 4-3-5 Relationship between node displacements for a wall element (Y-wall) 

Figure 4-3-4 Relationship between node displacements for a wall element (X-wall) 

w  
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1y  

21

12
21

xx

zz
yy

uu
w  

2y  

1xu  2xu  
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For example, in case of the structure in the figure below, by eliminating dependent freedoms, the total 

number of freedom becomes 17. 

 

Figure 4-3-6 Example of the freedom vector with a wall element 
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(3) Series of walls 

 

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams 

at the top and bottom. Therefore, as shown in Figure 4-3-7, the rotation angles in the wall panel plane, 1y  

and 2y , are dependent to the vertical displacements, 1z  and 2z . Also, the horizontal displacement in 

the wall panel plane, 2xu , is dependent to the displacement, 1xu . The connection is assumed to be rigid. 

 

In a matrix form; 

zN

z
yi LL 1/1/1        (4-3-4) 

zN

z
iizi LLLL 1//1       (4-3-5) 

Figure 4-3-7 Series of wall connected by a rigid beam (X-wall) 
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In case of Y-direction wall, the relationship can be written as; 

 
 

In a matrix form; 

zN

z
xi LL 1/1/1        (4-3-6) 

zN

z
iizi LLLL 1//1       (4-3-7) 

1yu  

1 

2 

2yu  
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2z  
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2x  

1w  
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yNu  

zN  

yNyy

i

k
iizNiziixizzi
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k
i

zNz
xNxx

uuu
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L

21

1

1
11

1

1

1
21

,//1

,

 

Figure 4-3-8 Series of wall connected by a rigid beam (Y-wall) 
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(4) Including ground springs 

 
In case there are ground springs (sway and rocking springs) at the basement of the building, the floor 

diaphragm of the basement is assumed to be rigid for both in-plane and out-of-plane deformation and the 

freedoms other than sway and rocking freedoms are restricted at the center of gravity. 

 

 
In case of the structure in the Figure below, by eliminating dependent freedoms, the total number of 

freedom becomes 21. 

 

 

Figure 4-3-9 Freedoms of ground springs 
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5 
4 

(a) Sway freedoms                   (b) Rocking freedoms 
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Figure 4-3-10 Example of the freedom vector with ground springs 
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4.4 Transformation matrix of dependent freedom 

 

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom 

and independent freedom, that is; 

 
It can be arranged into the transformation matrix between the freedom vectors of all nodes; 

 
Since the most components of the transformation matrix, ][ IT , are zero, the components of ][ IT  are 

remembered using two matrices, ][ IN  and ][ IF . 

 
It will reduce the memory size dramatically. 

01
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yAI

I

lF

mkN

 

i 

i 

; Matrix for independent freedom numbers 

; Matrix for transformation components from independent freedoms 
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Independent freedom 

k  l                m 

i 

k 
l  
 
 
 
m 

][ IT  
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In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship 

between dependent freedom and independent freedom, that is; 

 
It can be arranged into the transformation matrix between the freedom vectors of all nodes; 

 
The components of two matrices, ][ IN  and ][ IF  will be; 

 

0/1/1

0

wwF
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I

I
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j 

; Matrix for independent freedom numbers 

; Matrix for transformation components from independent freedoms 
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Initial conditions of ][ IN  and ][ IF  are: 

 
In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between 

Node 8 and Node 9 is, 

T
xxyyzz uu 989898       (4-4-1) 

Those displacements correspond to the location numbers in the freedom vector as; 

TT
xxyyzz uu 494353475145989898   (4-4-2) 

 
Figure 4-4-1 Example of location matrix for beam element 
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From rigid floor assumption, the components of independent matrices, ][ IN  and ][ IF  will be; 

 

001

001

01

001

001

01

53

51

49

47

45

43

,

0053

0051

06055

0047

0045

06055

53

51

49

47

45

43

9

8

y

y

II

l

l

FN     (4-4-3) 

 

From the matrix, ][ IN , the freedoms of (43) and (49) are replaced to the independent freedoms (55) and 

(60). Therefore, the independent location numbers and freedom numbers of the beam element are: 

 

numberfreedom

uuu

numberlocationtindependen

uu

T

T
zxyyzz

T

T

T
xxyyzz

;131110785

;605553475145

494353475145

10109898

989898

    

(4-4-4) 

The transformation from independent displacements (= global node displacements) to element node 

displacements is obtained from the matrix, ][ IF , as follows: 
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T
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l
l

u
u

    (4-4-5) 
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4.5 Stiffness matrix corresponding to independent degrees of freedom 

 

The constitutive equation of the beam element and formulation of global stiffness matrix from element 

stiffness matrix are shown below: 

 
Figure 4-5-1 Formulation of global stiffness matrix 

 

In general, the transformation from independent displacements (= global node displacements) to element 

node displacements for the X-beam is described as Equation (2-1-13). 
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n

ixB

xB

xA

yB

yA

zB

zA

u

u
u

T

u
u

2

1

       (2-1-13) 

And the constitutive equation of the X-beam is also described in Equation (2-1-20). 

n

xB

n u

u
u

K

P

P
P

2

1

2

1

       (2-1-20) 

Using the same procedure in Figure 4-5-1, the element stiffness matrix is added into the global stiffness 

matrix. 

 

4.6 Mass matrix corresponding to independent degrees of freedom 

 

Mass is assigned in each node. The inertia force at the node will be also transformed according to the 

transformation of the variables. Here, the rotational inertia at each node is ignored. 

 

(1) Rigid floor assumption 

 

 

 

 

 

 

 

 

 

 

 

The inertia force at the node A is  

0 0
0 0

0 0 0 0 0

xA A xA A xA

yA A yA A yA

zA

P m u m u
P m u m u     (4-5-1) 

 

A 

G 
Am  xAP  

yAP  

xGP  

yGP  

GM  
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Under the rigid floor assumption, the in-plane freedoms at the nodes in a floor are represented by the 

freedoms at the center of gravity of the same floor. Therefore, 

1 0
0 1
0 0 1

xA yA xG xG

yA xA yG A yG

zA zG zG

u l u u
u l u T u , 

1 0
0 1
0 0 1

yA

A xA

l
T l  (4-5-2) 

 

 

 

 

 

 

 

 

 

On the other hand, the inertia force at the center of gravity is calculated as, 

1 0 0
0 1 0

1 0 0

xG xA xA xA
T

yG yG yG A yG

zG yA xA xA yG yA xA

P P P P
P P P T P
M l P l P l l

  (4-5-3) 

Therefore, 

2

1 0 0 0 0
0 1 0 0 0

1 0 0 0 0

0 0 0
0 0 0
0 0 0

xG xA A xA
T

yG yA A A yA

zG yA xA zA

A xG A yA A
T

A A A yG A xA A

zG yA A xA A xA

P P m u
P P T m u
M l l

m u m l m
T m T u m l m

l m l m l 2

xG

yG

zGyA A

u
u

l m

 (4-5-4) 

If we ignore the off-diagonal components, 

2 2

0 0
0 0

0 0

xG A xG

yG A yG

zG zGA xA yA

P m u
P m u
M m l l

    (4-5-5) 

Taking the sum of the inertia force from the all nodes at the same floor,  

2 2

0 0
0 0 , ,
0 0

xG G xG N N

yG G yG G i G i ix iy
i i

zG G zG

P m u
P m u m m I m l l
M I

  (4-5-6) 

where, N is the total number of the nodes at the floor. 
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yGP  
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G: center of gravity 
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(2) Including rigid beam 

 

The wall element model has rigid beams at the top and bottom of the wall, and the horizontal displacement 
in the wall panel plane, 2xu , is dependent to the displacement, 1xu .  

 

 

 

 

 

 

 

The inertia force after transformation is 

1 1 11 1 2

2 2 22

0 0
0 0 0

Tx x x

x x x

P u um m m
T T

P u um
 

Therefore, the horizontal mass is 

1 1 2 1x xP m m u  

 

 

 

 

 

 

 

 

 

On the other hand, the vertical mass is the same as before. 

 

 

 

 

 

 

 

 

 

 

 

1z  2z  
1 1 1
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x x x

u u u
T

u u u
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2 2m  1 1m  

1xP  2xP  

2 1 1 2m m  

1xP  

2 2m  1 1m  

1zP  2zP  

2 2m  1 1m  

1zP  2zP  
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(3) Series of rigid beams 

 

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams 

at the top and bottom.  

 

 

 

 

 

 

 

 

 

The all horizontal displacements at the nodes are dependent to the horizontal displacement of 

the first node, 1xu . 

1 2x x xNu u u  

Also, the vertical displacement at the middle node zi  is dependent to the vertical displacements of 

the nodes at both ends, 1z  zN . 

11 i i
zi z zN

L L
L L

 

 
Therefore, the horizontal mass is 

1 1 2 1 1
1
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x N x i x
i

P m m m u m u  
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The vertical mass is 

 

 1 1
1

1
N

i
z i z

i

LP m
L

 

1

N
i

zN i zN
i

LP m
L

 

 

 

 

i im  1 1m  
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5. Equation of motion 

 

5.1 Mass matrix 

 

In the default setting, the mass at each node is identical and equally distributed as 

floor
floor

i M
N

M 1
       (5-1-1) 

where, iM : mass at the node i, floorM : total mass of the floor, floorN : total number of nodes in the 

floor.  

 

However, you can change the mass at each node depending on the place of the node by setting “proportion 

to influence area” in Option Menu. In this case, the mass at each node is determined from the following 

equation: 

floor
floor

i
i M

A
A

M        (5-1-1) 

where, iA : influence area of node i, floorA : total area of the floor. Influence area of the node is different 

depending on the place of the node as shown in Figure 5-1-1.  

 

 

The process to determine the mass based on influence area is as follows: 

 

Step 1. Calculate the slab area (block with cross mark) 

Step 2. The area of the block is divided equally to the corner nodes. (Figure 5-1-2) 

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3) 
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Figure 5-1-1 Mass and rotational inertia at the node 
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(1) Influence area of the node (2) Mass and rotational inertia at G 

lix 

liy 
Mi 

IG 

G : center of gravity of the floor 
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Figure 5-1-2. Influence area of the node (red) 

 

 

   

   

   

 

Figure 5-1-3. Distribution of the rest area 

 

Example)   Floor weight = 700kN 

 

 

 
 

    
 

 
 

    
 

      
 

 

(a) Same for all nodes                         (b) Proportional to influence area 

Figure 5-1-4 Example of mass distribution 
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the 

center of gravity of the floor. Therefore, the mass at the center of gravity, GM , is, 

floorG MM          (5-1-2) 
The rotational inertia at the center of gravity, IG, along the z-axis is obtained from the following equation: 

22
iyix

N

i
iG llMI         (5-1-3) 

where, N is the total number of the nodes at the floor. The rotational inertia at other nodes are, 
NiI i ,,1,0         (5-1-4) 

The mass matrix is obtained as, 

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector. 

For example, the mass vector of the structure in Figure 5-1-5 will be as follows: 

 

Figure 5-1-5 Example of mass vector 
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 (5-1-5) 
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In case a complete rigid floor such as a foundation slab for the ground springs, we need to calculate the 

rotational inertia at the center of gravity along each axis. 

 

 

 

 

 

 

 

 

 

The rotational inertia along Z-axis is 

 

 

 

 

 

 

 

         (5-1-6) 

In the same way, the rotational inertia along X-axis is 

 2 2

12X
MI b c       (5-1-7) 

The rotational inertia along Y-axis is 

 2 2

12Y
MI a c       (5-1-8) 

 

If the mass is located at each node, as already mentioned, the rotational inertia at the center of gravity, IG, 

along the Z-axis is obtained as 

2 2 2
Z i ix iyI r dV M l l  (5-1-9) 

X 
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Y 

c 

a 
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2 2
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2 2
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a b c

Z
a b c

a b c a b c
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MI r dV x y dxdydz
abc

M x dx dy dz dx y dy dz
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M a b
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Mi 
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G : center of gravity of the floor 
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5.2 Stiffness matrix 

 

As shown in Figure 4-4-2, the global stiffness matrix K  is formulated from element stiffness matrices. 

 
Figure 5-2-1 Formulation of global stiffness matrix 

 

 

10

10

9

8

9

8

12,12

13,1111,11

13,1011,1010,10

13,711,710,77,7

13,811,810,87,88,8

13,511,510,57,58,55,5

10

10

9

8

9

8

.
13
11
10
7
8
5

z

x

y

y

z

z

z

x

y

y

z

z

u

u
u

k
kksym
kkk
kkkk
kkkkk
kkkkkk

M
P
M
M
P
P

 

   5    8     7    10    11    13 

Element stiffness matrix 
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Global stiffness matrix 
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Example of beam element 
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5.3 Modal analysis 

 

1) Eigen value problem 

The free vibration equilibrium equation without damping is 

0uKuM        (5-3-1) 

where K  is the stiffness matrix and M  is the mass matrix in the form; 

nm

m
m

M

00

00
00

2

1

      (5-3-2) 

The solution can be postulated to be in the form 

tieu         (5-3-3) 

where is a vector of order n, is a frequency of vibration of the vector . 
 
Substituting into the equilibrium equation, the generalized eigen problem is obtained as, 

MK 2        (5-3-4) 

This eigen problem yields the n eigen solutions nn ,,,,,, 2
2

2
21

2
1 where the 

eigen vectors are M-orthonormalized as, 

, ,
1

0 ;
n

T
i j k i k j k

k
M m i j      (5-3-5) 

)  

Let’s assume two different set of eigen solutions 2 2, , ,i i j j .  

Form Equation (5-3-4), 
2T T T

i j i j i i jK K M     (5-3-6) 

Since K  and M  are the symmetric matrices, 

2 2T TT T
i j j i j j i j i jK K M M  (5-3-7) 

Subtracting Equation (5-3-7) from Equation (5-3-6), 

2 2 0T
i j i jM       (5-3-8) 

Since i j , we obtain Equation (5-3-5). 

The vector i  is called the i-th mode shape vector, and i  is the corresponding frequency 

of vibration. 
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22) Modal decomposition of equilibrium equation 
Defining a matrix  whose columns are the eigenvectors and a diagonal matrix 2  
which stores the eigenvalues on its diagonal as, 

n21 , 

2

2
2

2
1

2

n

  (5-3-9) 

We introduce the following transformation on the displacement vector of the equilibrium 
equation (5-5-2): 

( ) ( )u t q t        (5-3-10) 

Then, 

M q C q K q P     (5-3-11) 

Multiplying T , 

T T T TM q C q K q P   (5-3-12) 

where 

1

2 ,T T
i i i

n

m
m

M M m M

m

  (5-3-13) 

1

22 ,T T
i i i

n

k
k

K M M K k m

k

 

         (5-3-14) 

A damping matrix that is diagonalized by  is called a classical damping matrix. 

1

2T

n

c
c

C C

c

     (5-3-15) 

where, M , C  and K  are called ggeneralized modal mass, modal damping and modal 
stiffness matrix, respectively.

320



Therefore, 
TM q C q K q P      (5-3-16) 

It can be reduced to n- equations of the form 

( ) ( ) ( ) ( )i i i i i i im q t c q t k q t r t       (5-3-17) 

where 
0

0

0

( )
( ) ( ) ( )

( )

T T
i i i

X t
r t P t M U Y t

Z t
    (5-3-18) 

By setting / 2i i i ic m h  and 2/i i ik m  

0
2

0 , 0 ,y 0 , 0

0

( )
( ) 2 ( ) ( ) ( ) ( ) ( ) ( )

( )

T
i i i i i i i i x i i x

X t
q t h q t q t Y t X t Y t Z t

Z t
   

(5-3-19) 
where  

, ,y ,z

TT
Ti x y zT i

i i x i iT T
i i i i

M U U UM U

M M
 (5-3-20) 

,y,z
, , ,

T
i x

i x y z T
i i

M U

M
      (5-3-21) 

, , ,i x y z  is called “pparticipation factor” of i-th mode.  

, , ,i x y z  is the coefficient when you decompose the vector ,y,zxU into mode vectors as, 

,y,z , , , , ,
1

n

x x y z i x y z i
i

U      (5-3-22) 

)  

Multiplying T M , 

,y,z , , , ,
T T

x x y z x y zM U M M    (5-3-23) 

Therefore, 
1

, , ,y,z
T

x y z xM M U       (5-3-24) 

It is equivalent to Equation (5-3-21). 
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Equation (5-3-17) can be decomposed again as, 

2
0

2
0

2
0

( ) 2 ( ) ( ) ( )

( ) 2 ( ) ( ) ( )

( ) 2 ( ) ( ) ( )

i i i i i i

i i i i i i

i i i i i i

x t h x t x t X t

y t h y t y t Y t

z t h z t z t Z t

     (5-3-25) 

and 

, ,y ,z( ) ( ) ( ) ( )i i x i i i i iq t x t y t z t      (5-3-26) 

Therefore, the displacement vector is obtained by superposing displacement responses of 
single-degree-of-freedom (SDOF) systems in each mode and each direction as, 

, ,y ,z
1 1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n n n

i i i x i i i i i i i i
i i i i

u t q t q t x t y t z t  

         (5-3-27) 

,i x i  is called “pparticipation vector” of i-th mode in x-direction. 

 
3) Effective modal mass 
The kinematic energy of the vibration is calculated as, 

1
2

T
iE u t M u t        (5-3-28) 

For simplicity, only the x-directional response is considered. Then, mode decomposition of the 
velocity vector is  

,
1

( ) ( ) ( )
n

i x i i
i

u t q t x t      (5-3-29) 

Substituting into equation (5-3-28), we obtain 

2 2 2 2 2 2
1 1 1 2 2 2

2 2 2
,1 1 ,2 2 ,

1 1 1( ) ( ) ( ) ( )
2 2 2

1 1 1
2 2 2
1 1 1
2 2 2

T T T T

n n n

e e e n n

E u t M u t q t M q t q t M q t

m x m x m x

m x m x m x

 

         (5-3-30) 

where 2
,e i i im m  is called the  effective mass. 

That is, the kinetic energy of a structure can be decomposed into the sum of the kinetic 
energies of one-degree-of-freedom systems with effective masses in each mode. 

2
,1 ,2 , , ,

1,
2e e e n e i e i iE e e e e m x      (5-3-31) 

Therefore, when determining which vibration mode is dominant, the ratio of effective mass to 
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total effective mass 

, ,
1

n

i e i e k
k

m m         (5-3-32) 

is sometimes used. This is called the eeffective mass ratio.  
In addition, the following relationship holds. 

2

2
,

TT
iTi

e i i i i i i iT T
i i i i

M UM U
m m m M U

M M
 (5-3-33) 

,
1 1 1

n n n
T T

e i i i i
i i i

m M U U M U m    (5-3-34) 

 
4) Equivalent one mass model 
If we consider the first-order mode to be dominant in a multi-story building, the displacement 
distribution is expressed as, 

1 1 1( ) ( )u t x t        (5-3-35) 

If we consider that the response is harmonic near its maximum value, 

1
1 1( ) i t

Du t S e        (5-3-36) 

where DS  is the displacement response spectrum of the first mode. 

 

 

 

 

 

 

 

 

 

 

1 1,i i Du S  

1 

2  

n  

i  

 

The acceleration response is 

1 12
1 1 1 1 1( ) i t i t

D Au t S e S e     (5-3-37) 

where 2
1A DS S  is the pseudo acceleration response spectrum of the first mode, and 1  is 

the participation factor of the 1st mode defined in Equation (5-3-21) , that is, 
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1,
1

1
2

1,
1

n

i i
i
n

i i
i

m

m
        (5-3-38) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Besides the energy-based definition,  the effective mass, em , can be defined from the condition 
that the base shear, BQ , is equal in the two models. The base shear of the multi-story 

building balanced by the inertia forces of the upper floors is 

1 1, 1 1,
1 1 1

n n n

B i i i A i i i A
i i i

Q m u t m S m S    (5-3-39) 

The base shear of the SDOF system is, 

,1B e AQ m S          (5-3-40) 

Therefore, 
2

1,
1

,1 1 1,
21

1,
1

n

i in
i

e i i n
i

i i
i

m
m m

m
      (5-3-41) 

 
The effective height, eH , is obtained from the condition that overturning moment at the base 
of the building, BM , is equal in the two models. The overturning moment of the multi-story 

building is 

1 1, 1 1,
1 1 1

n n n

B i i i i i A i i i i A
i i i

M m u t H m H S m H S    (5-3-42) 

The overturning moment of the SDOF system is, 

,1 ,1B e e AM H m S         (5-3-43) 

em

DS

B e AQ m S
BQ

iu

1

2

n

i

eH

B e e AM H m S
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Therefore, 

1 1, 1,
1 1

,1
,1

1,
1

n n

i i i i i i
i i

e n
e

i i
i

m H m H
H

m m
     (5-3-44) 

The displacement of the representative point is defined as 

 

22 2
1 1, 1,

1 1 1
1

1 1, 1,
1 1 1

n n n

i i i i D i i
i i i

d D Dn n n

i i i i D i i
i i i

m u m S m
S S

m u m S m
  (5-3-45) 

It is consistent with the displacement response spectrum.  
Also, the acceleration response spectrum is obtained as 

2
1,

1
2

,1
1,

1

n

i i
iB

A Bn
e

i i
i

m
QS Q
m

m
      (5-3-46) 

 
5) Initial condition 
The initial conditions are obtained from Equation (5-3-10) as, 

( ) ( ) ( )T TM u t M q t M q t     (5-3-47) 

Therefore, 
1 1

0 0 0 0
,T T

t t t t
q M M u q M M u   (5-3-48) 
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5.4 Damping matrix 

 

In STERA 3D program, the damping matrix is formulated in the following way: 

 

1) Proportional damping 

The mass-proportional damping and the stiffness-proportional damping are defined as, 

MaC 0   and  KaC 1       (5-4-1) 

where the constants 10 , aa  have units of sec-1 and sec, respectively. 

 
For a system with a mass-proportional damping, the generalized damping for the i-th mode in 
Equation (5-4-1) is obtained as, 

ii mac 0 , iiii hmc 2/       (5-4-2) 

Therefore, 

iiha 20 , 
i

i
ah 1
2

0       (5-4-3) 

Similarly, for a system with a stiffness-proportional damping, the generalized damping for the 
i-th mode is, 

iii mac 2
1 , iiii hmc 2/       (5-4-4) 

Therefore, 

i

iha 2
1 , ii

ah
2

1       (5-4-5) 

 
 
 
 
 
 
 
 
 

 
In STERA_3D, you can select from the two types of stiffness-proportional damping.  

One is the proportional damping using the initial stiffness matrix: 

0
1

2 KhC         (5-4-6) 

ih  

 

KaC 1  

ii
ah
2

1  

MaC 0  

i
i

ah 1
2

0  
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where, h: damping factor, 1 : circular frequency of the first natural mode, 0K : the initial stiffness. 

 

Another is the proportional damping using the spontaneous stiffness matrix 

pKhC 2
        (5-4-7) 

where, h: damping factor, 1 : circular frequency of the first natural mode, pK : the spontaneous 
stiffness changing according to the nonlinearity of structural elements. 
 

In the scene of the practical design of Japan, it is common to use the proportional damping using the 

spontaneous stiffness matrix. 

 

2) Rayleigh damping 
A Rayleigh damping matrix is defined proportional to the mass and the initial stiffness 
matrices as, 

010 KaMaC        (5-4-8) 

The modal damping ratio for the i-th mode is, 

i
i

i
aah
2

1
2

10        (5-4-9) 

The coefficients 10 , aa  can be determined from specified damping ratios 21, hh  modes, 

respectively. Expressing Equation (5-4-9) for these two modes in matrix form leads to: 

2

1

1

0

22

11

/1
/1

2
1

h
h

a
a

      (5-4-10) 

Solving the above system, we obtain the coefficients 10 , aa : 

2
2

2
1

1221
1

2
2

2
1

122121
0

2

2

hha

hha
       (5-4-11) 

 
 
 
 
 
 
 
 
 
 

ih  

 

KaMaC 10  

i
i

i
aah
2

1
2

10  
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3) Damping matrix with a base isolation building 

In an actual design practice for the base isolation buildings, it is common to assume zero viscous damping 

for horizontal components of the base isolation floor. For example, in case of the stiffness-proportional 
damping, the damping matrix is defined as: 

,
2

upper BI V
hC K K  (5-4-12) 

where,  

upperK : the stiffness matrix consisted with upper structures without base isolation elements, 

,BI VK : the stiffness matrix of base isolation elements for vertical components. 

 

4) Damping matrix with viscous damper devices 

If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the 

global damping matrix formulated from element damping matrices are considered as: 

vpro CCC  (5-4-13) 

where, proC : the proportional damping matrix, vC : the global damping matrix formulated from 

element damping matrices in the same manner of the global stiffness matrix. 
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5.5 Input ground acceleration 

 

Earthquake ground motions are defined as three components acceleration; 00 , YX and 0Z , in X, Y and Z 

directions. The inertia forces at node i are defined as, 

0

0
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0

0

0
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0

0
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u
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yi
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zi

yi

xi

zi

yi

xi

zi

yi

xi

zii

yii

xii

zii

yii

xii

 (5-5-1) 

For example, the components of the matrix U  of the structure in Figure 5-5-1 will be as follows: 

 
Figure 5-5-1 Components of the matrix U  
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Equilibrium condition of the structure under earthquake ground motion is: 

 
Finally the equation of motion is obtained as: 

P
Z
Y
X

UMuKuCuM

0

0

0

    (5-5-3)

Inertia force 
Damping force 

Restoring force 

0

0

0

Z
Y
X

UMuMuKuC  (5-5-2) 
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5.6 External force by vibrator 

 

A vibrator is assumed to be located at the center of gravity at a certain floor. The external forces from the 

vibrator are denoted as ,x yF F in X and Y directions.  

1 0
0 1

0 0 0
0 0 0
0 0 0
0 0 0

x

y

x x

y y

F
F

F F
V

F F
       (5-6-1) 

For example, the components of the matrix V  of the structure in Figure 5-6-1 will be as follows: 

 

Figure 5-6-1 Components of the matrix V  
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Equilibrium condition of the structure under vibrator force is: 

 

[ ] x

y

F
C u K u M u U

F
   (5-6-2) 

 

 

 

 

Finally the equation of motion is obtained as: 

x

y

F
M u C u K u U P

F
  (5-6-3) 
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5.7 External force by wind 

 

A wind force is assumed to be applied at the center of gravity at each floor with the constant distribution 

along the height of the building. The external forces at i-th floor from the wind are denoted as 

, , ,, ,i x x i y y r y zh F t h F t h M t in X, Y horizontal directions and Z rotational direction.  
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     (5-7-1) 

 

Figure 5-7-1 Wind force distribution 
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For example, the components of the matrix W  of the structure in Figure 5-7-1 will be as follows: 

 

Figure 5-7-2 Components of the matrix W  
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Equilibrium condition of the structure under wind force is: 

 

[ ]
x

y

z

F
C u K u M u W F

W
   (5-7-2) 

 

 

 

 

Finally the equation of motion is obtained as: 

x

y

z

F
M u C u K u W F P

W
  (5-7-3) 
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5.8 Numerical integration method 

 

Two numerical integration methods are prepared; one is the Newmark-  with incremental 

formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a 

step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of 

the element such as the case of using a viscous damper element, the Operator Splitting method is selected. 

 

a) Equation of motion and its incremental form 

 

The equation of motion of a structural system is written as, 

M a C v K d p        (5-8-1) 

where, M , C  and K  are the mass, damping and stiffness matrices. d , v , a  and p  

are the displacement, velocity, acceleration, and external force vectors. 

 

The incremental formulation for the equation of motion is, 

i i i iM a C v K d p       (5-8-2) 

where, id , iv , ia  and ip  are the increments of the displacement, velocity, acceleration, 

and external force vectors, that is, 

iii ddd 1 , iii vvv 1 , iii aaa 1 , iii ppp 1  (5-8-3) 

In case of a system with hysteresis nonlinearity, the equation of motion can be described as, 

M a C v f d p        (5-8-4) 

where f d  is the force as a nonlinear function of the displacement d . The incremental form can be, 

i i i iM a C v f d p       (5-8-5) 

In a small time-increment, it can be assumed as a linear relationship in force-deformation as shown in 

Figure 5-8-1, 

i i if d K d         (5-8-6) 

Finally, the equation of motion in incremental form is the same as Equation (5-8-2), that is 

i i i i iM a C v K d p       (5-8-7) 
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Figure 5-8-1 Nonlinear force-deformation relationship 

 

In the initial condition, the building will deform under the gravity load, i.e., the dead and live loads. It can 

be analyzed by solving the following equation, 

0

0

0

X
M a C v K d M U Y

Z g
          (5-8-26) 

where g  is the gravity acceleration. When the gravitational acceleration is initially applied, the response 

may fluctuate in the beginning. Therefore, it is better to apply the static gravity force 0f  instead of 

acceleration as, 

0

0 0

0

X
M a C v K d M U Y f

Z
,   0

0
0f M U
g

       (5-8-27) 

and set the initial displacement as 0d d , where 0d  is the solution of 

0 0K d f  

The incremental form will be 

0

0

0

i i i i

X
M a C v K d M U Y

Z
 

d  

f  

f k t d  f  

d  
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b) Newmark- method 

 

The incremental formulation for the equation of motion of a structural system is, 

iiii pfdKvCaM      (5-8-1) 

where, M , C  and K  are the mass, damping and stiffness matrices. id , iv , ia  and 

ip  are the increments of the displacement, velocity, acceleration and external force vectors, that is, 

iii ddd 1 , iii vvv 1 , iii aaa 1 , iii ppp 1  (5-8-2) 

f  is the unbalanced force vector in the previous step.  

 

Using the Newmark-  

2 2
1 1

1
2i i i i id d v t a t a t     (5-8-3) 

1 1
1
2i i i iv v a a t        (5-8-4) 

The incremental form is 

22

2
1 tatatvd iiii       (5-8-5) 

tatav iii 2
1

       (5-8-6) 

From Equation (5-8-5), we obtain 

iiii av
t

d
t

a
2
111

2      (5-8-7) 

Substituting Equation (5-8-7) into Equation (5-8-6) gives 

tavd
t

v iiii 4
11

2
1

2
1

     (5-8-8)  

Equations (5-8-7) and (5-8-8) are substituted into the equation of motion, Equation (5-8-1), and we obtain 

ftavCav
t

Mp

KC
t

M
t

d

iiiii

i

1
4
1

2
1

2
11

2
11

2

  (5-8-9) 
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The equation can be rewritten as, 

ii pdK ˆˆ        (5-8-10) 

where, 

M
t

C
t

KK 2

1
2

1ˆ      (5-8-11) 

ftavCav
t

Mpp iiiiii 1
4
1

2
1

2
11ˆ       

(5-8-12) 
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c) Operator Splitting method 

The Operator Splitting (OS) method is a type of mixed integration method in which stiffness is divided into 

linear and nonlinear (Nakashima, 1990). The explicit predictor-corrector method is employed for the 

integration associated with the nonlinear stiffness, whereas the unconditionally stable Newmark-  method 

is used for the integration associated with linear stiffness. The formulations are described as follows: 

 

Using the Newmark-  

2 2
1 1

1
2i i i i id d v t a t a t    (5-8-13) 

1 1
1
2i i i iv v a a t       (5-8-14) 

Introducing the predictor displacement 1id as, 

2
1

1
2i i i id d v t a t      (5-8-15) 

1
1
2i i iv v a t        (5-8-4) 

(5-8-13) can be written as 

2
1 1 1i i id d a t       (5-8-16) 

Therefore 

1 1 1 12 2
1 1

i i i ia d d d
t t

    (5-8-17) 

where 

1 1 1i i id d d        (5-8-18) 

Substituting Equation (5-8-17) into Equation (5-8-14), 

1 1
1 1

2 2i i i iv d v a t
t

     (5-8-19) 

 

In the equation of motion, 

1 1 1 1i i i iM a C v f d p      (5-8-20) 

1 1 1 1,i i i iM a f d d p  

The nonlinear internal resisting forces are approximated as follows: 

 1 1i if d K d f      (5-8-21) 

340



1 1 1i i if d C v K d f  

where 

 1 1i if K d f d      (5-8-22) 

 1 1 1i i if C v K d f d  

In this formulation, K  is the initial stiffness matrix. 

 

 

 

 

 

 

 

 

 
The nonlinear internal resisting forces can be written as, 

 1 1 1 1i i i if d K d d f d     (5-8-23) 

where 1iK d  is a predictor stiffness.  

The predictor stiffness is not necessary to be the initial stiffness and if the predictor stiffness is close to the 

tangent stiffness, the corrector force is more accurate. It is known that if the predictor stiffness is larger than 

the tangent stiffness, the OS method is unconditionally stable. 

 

 

 

 

 

 

 

 

1if d  

1if d  

1id  1id  

Predictor 

Corrector 

Force 

Displacement 

1iK d  

1iK d  

f  

f  

K  
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In STERA_3D, the predictor stiffness is created from the initial stiffness or tangent stiffness 
if available. 
 
Substituting the above equations into the equation of motion, 

1 1 1 1i i i iM a C v f d p      (5-8-24) 

1 12
1 1 1

2 2i i i iM d C d v a t
tt

 

1 1 1 1i i i iK d d f d p  

 

Solving for 1id , 

1
ˆ ˆiK d p              (5-8-25) 

where 

1 2
1 1ˆ

2iK K d C M
t t

    (5-8-26) 

1 1
1ˆ
2i i i ip C v a t f d p        (5-8-27) 

 

The procedure for solving the equation of motion is as follows: 

Step 1.  Calculate the predictor displacement vector 1id  by Equation (5-8-15). 

Step 2.  Obtain the restoring force 1if d  in reference to the constitutive model. 

1if d  

1if d  

1id  
1id  

Predictor 

Corrector 

Force 

Displacement 

1iK d  
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Step 3.  Substitute 1if d  to Equation (5-8-27) and solve the displacement increment 1id  

from Equation (5-8-25) and obtain the corrector displacement 1nd  from Equation (5-8-18). 
 

Under seismic excitation and gravity load, the equation of motion will be, 

0, 1

1 1 1 0, 1

0, 1

i

i i i i

i

X
M a C v f d M U Y

Z g
      (5-8-28) 

The initial displacement as  0d d , where 0d  is the solution of 

0

0
0K d M U
g

             (5-8-29) 
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5.9 Energy  

 

a) Equation of energy 

 

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as: 

P
Z
Y
X

UMuKuCuM

0

0

0

     (5-9-1) 

For example, in case of a structure with a rigid floor in Figure 5-9-1, the displacement vector, u , consists 

of 15 components (see RED numbers in Figure 5-9-1.) 

15

2

1

u

u
u

u          (5-9-2) 

 

The equation of energy is derived by multiplying the velocity vector, Tu , and integrating by the time 

range [0-t]: 

dtPudtuKudtuCudtuMu
t

T
t

T
t

T
t

T

0000

   (5-9-3) 

Node number Freedom number 

Figure 5-9-1 Example of the freedom vector of a structure with a rigid floor 
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dtPuuKudtuCuuMu t
T

Tt
T

T

00 22
    (5-9-4) 

IPDK WWWW         (5-9-5) 

where, 

dtPuW

uKuW

dtuCuW

uMuW

t
T

I

T

P

t
T

D

T

K

0

0

2

2

 

 

If the system is nonlinear, the equation of motion can be expressed as: 

P
Z
Y
X

UMuuQuCuM

0

0

0

,      (5-9-6) 

where, uuQ ,  is the nonlinear restoring force vector. Then, the equation of energy can be derived as; 

 

IPDK WWWW         (5-9-7) 

where, 

dtPuW

dtuuQuW

dtuCuW

uMuW

t
T

I

t
T

P

t
T

D

T

K

0

0

0

,

2

        (5-9-8) 

 

: Kinematic energy 
 
: Damping energy 
 
: Potential energy 
 
: Input energy 

: Kinematic energy 
 
: Damping energy 
 
: Potential energy 
 
: Input energy 
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b) Decomposition of potential energy 

 

We can decompose the restoring force vector into the restoring force of each member as, 

 
membersofnumbernuuquuquuquuQ n :;,,,, 21        (5-9-9) 

 

Therefore, the potential energy can be decomposed as, 

 

n

i
iP

n

i

t

i
T

t n

i
i

T
t

T
P WdtuuqudtuuqudtuuQuW

1
,

1 00 10

,,,       (5-9-10) 

where 

dtuuquW
t

i
T

iP
0

, , ;  potential energy of i-th member        (5-9-11) 
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6. Nonlinear Static Push-Over Analysis 

 

6. 1 Lateral distribution of earthquake force 

 

The static lateral load representing the earthquake force is applied at the center of gravity in each floor. 

There are several formulas to define the load distribution along the height of the building. In “STERA 3D” 

program, the following distributions are prepared: 

1. Ai   2. Triangular   3. Uniform   4. UBC   5. ASCE   6. Mode 

 

(1) Ai distribution 

In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as, 

0, CAZRCwCQ iti

n

ij
jii       (6-1-1) 

where,  

Ci :  design shear coefficient of i-th story, 

wi :  weight of i-th story, 

Z:  seismic zone factor, 

Rt:  vibration characteristic factor taking into consideration of soil condition, 

Ai :  lateral distribution of shear force coefficient, 

C0:  design base shear coefficient (C0 =0.2 for serviceability limit, C0 =1.0 for safety limit) 

 

If we set, Z=1.0 (Tokyo), Rt=1.0 (stiff soil, a short story building), C0=1.0 (safety design), the design shear 

force distribution is simplified as, 
n

ij
jii wAQ         (6-1-2) 

 

“Ai” distribution is defined as, 

T
TA i

i
i 31

211       (6-1-3) 

where, 

 
n

j
j

n

ij
ji wWWw

1
, : the ratio of weight upper than i-th story, 

 T :  the first natural period of a building (=0.02h, h : the building height) 
 
As shown in Figure 6-1-1, the static lateral load is obtained as, 

1,,1, 1 niQQFQF iiinn      (6-1-4) 
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(2) Triangular distribution 

Triangular distribution is defined as: 

n

j
jiBi hhQF

1
       (6-1-5) 

where,  
QB  :  base shear force 

 hi :  the height of the i-th story from the ground 

 

Fi 

Figure 6-1-2  Triangular distribution 
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h6 

Q6 = C6 w6 
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wCQ

iti

n

ii
jii  

F6 = Q6 

F5 = Q5 – Q6 
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.  

.  

.  

Figure 6-1-1  Ai distribution 
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(3) Uniform distribution 

Uniform distribution is defined as: 

nQF Bi 1         (6-1-6) 

 
(4) UBC distribution 

The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force 

distribution: 

n

j
jjiitBi hwhwFQF

1
      (6-1-7) 

0 , 0.7sec
0.07 , 0.7sect

B

if T
F

TQ if T
      (6-1-8) 

 

Figure 6-1-3  Uniform distribution 

Fi 

Fi 

Figure 6-1-4 UBC distribution 

Ft 

h1 

h2 

h6 
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(5) ASCE distribution 

The IBC (International Building Code) in the U.S. refers to the ASCE 7 “Seismic Design Requirements for 

Building Structures” which gives the following formula for the calculation of lateral force distribution: 

1

n
k k

i i i j j
j

F w h w h        (6-1-9) 

where k is an exponent related to the structural period as follows: 

1 , 0.5sec
0.5 / 2 , 0.5sec 2.5sec
2 , 2.5sec

if T
k T if T

if T
    (6-1-10) 

 
 

 

Fi 

Figure 6-1-5 ASCE distribution 

h1 

h2 

h6 

k=1 k=2 
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(6) Mode distribution 

Mode distribution is defined as: 

n

j
jjiiBi wwQF

1
,1,1       (6-1-11) 

where,  

 i,1 :  component of the first mode distribution in the i-th story 

 

 

Fi 

Figure 6-1-6 Mode distribution 

i,1  
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6. 2 Capacity Curve 

 

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the 

maximum response of a structure under an earthquake ground motion. The concept was modified by 

Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in 

each calculation step. The method was adopted as one of the evaluation procedures in the Building 

Standard Law, Japan.  

 

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand 

Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity 

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).  
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Figure 6-2-1 Schematic example of the concept of Capacity Spectrum Method 

 

As discussed in 5.3 Modal analysis, if we consider the first-order mode to be dominant in a 
multi-story building, the displacement and acceleration of the equivalent one mass model are 
expressed as, 

2

1

1

n

i i
i

D n

i i
i

m u
S

m u
, 

2 2
1,

1 1
2 2

1,
1 1

n n

i i i i
i i

A B Bn n

i i i i
i i

m m u
S Q Q

m m u
    (6-2-1) 

 

Representing the displacement by the inelastic rather than the elastic first-mode shape is 
consistent with characterizing the structure by its secant stiffness to maximum response. 
Therefore, “STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the 

following formula (Kuramoto et.al [2000]): 
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2

1

1

n

i i
i

D n

i i
i

m
S

m
, 

2

1
2

1

n

i i
i

A Bn

i i
i

m
S Q

m
      (6-2-2) 

where, 

 mi :  lumped mass in the i-th story 

 i :  component of the distribution of nonlinear story displacement in the i-th story 

 

As schematically shown in Figure 6-2-2, the step-by-step results of nonlinear push-over analysis is used to 

obtain the Capacity Curve of the equivalent SDOF system using Equation (6-2-2). 
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7. Lumped Mass Model 

 

7.1 Decomposition of shear and flexural deformation 

 

a-1) Equivalent plane for each floor from displacement 

 
The equivalent plane ( cbyaxz ) is obtained from the vertical displacement distribution by the least 

square method: 

 

Minimize  2cbyaxzL iii     (7-1-1) 

where, i : node number in the floor 

, ,a b c : parameters of equivalent plane 

Thus,  0,0,0
c
L

b
L

a
L

    (7-1-2) 

 

Parameters, a, b, c are obtained by solving the following linear equation: 

c
b
a

nsym
yy
xyxx

z
yz
xz

ii

iiii

i

ii

ii

.

2

2

     (7-1-3) 

where,  

n : the number of nodes in a floor 

 

Figure 7-1-1 Equivalent plane 

cbyaxz  

x 

z 

y 

iz  
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a-2) Equivalent plane for each floor from potential energy 

 
The equivalent plane ( cbyaxz )is obtained from the vertical potential energy distribution by the 

least square method: 

 

Minimize  
2

i i i i iL N z N ax by c     (7-1-4) 

where, i : node number in the floor 

iN : axial load at node i  

, ,a b c : parameters of equivalent plane 

Thus,  0,0,0
c
L

b
L

a
L

    (7-1-5) 

 

Parameters, a, b, c are obtained by solving the following linear equation: 

2

2

.

i i i i i i i i i i

i i i i i i i

i i i

N z x N x N x y N x a
N z y N y N y b
N z sym N c

    (7-1-6) 

where,  

n : the number of nodes in a floor 

 

At this moment, STERA_3D adopts the formulation a-1), since it is easier to implement. 

Figure 7-1-2 Equivalent plane 

Nz N ax by c  
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i iN z  
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b) Decomposition of shear and flexural deformation 

 

A story drift, D, can be divided into shear and flexural components as, 

( ) ( )S FD D shear D flexure       (7-1-7) 

Assuming the distribution of floor deformation is expressed by an equivalent plane ( cbyaxz ), the 

flexural deformation, FD , can be expressed as, 

 

FD aH  : x-direction      (7-1-8) 

FD bH  : y-direction      (7-1-9) 

 

Note that the coefficient ‘a’ is the negative angle in x-direction. 

Then, the shear deformation can be obtained as, 

S FD D D         (7-1-10) 

 
 

 

Figure 7-1-3 Decomposition of shear and flexural deformation 
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7.2 Lumped mass model with shear and flexural stiffness 

 

a) Linear flexural model 

The frame model can be idealized as a lumped mass model with a concentrated mass at each floor and 

shear and flexural springs in each story. 

 

 

 

 

 

 

 

 

 

 
Under the external lateral forces, ( 1, 2,3)iF i , the shear force and moment of each story are expressed 

as below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In general 
N

i j j
j i

M Q h         (7-1-11) 

Note that if we consider the sign of coordinate 

,
N N

yi xj j xi yj j
j i j i

M Q h M Q h       (7-1-12) 

2 2 2 3 2 3 2 2 3 3M F h F h h Q h Q h , 1  

3 3 3 3 3M F h Q h , 2  

3F  

2F  

1F  

3 3Q F  

2 3 2Q F F  

1 3 2 1Q F F F  

3h  

2h  

1h  

1 1 1 2 1 2 3 1 2 3 1 1 2 2 3 3M F h F h h F h h h Q h Q h Q h  

3EI  

2EI  

1EI  

3  

Figure 7-1-4 Idealization to lumped mass model 

Figure 7-1-5 Moment and shear force of lumped mass model 
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From the beam theory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting 

1 1 1, , , , ,A i B i A i B i i i iM M M M EI EI h h  

1 1

1 1 1

32 12 2
3 21 2

i i i ii i

i i i i ii i

M EI EI
M h h

   (7-1-14) 

Therefore, the equivalent flexural stiffness can be obtained as 

1

1
1 1

1

, 1, ,
2

2

i
i i i

i

n
n n

n

hEI M M i n

hEI M
     (7-1-15) 

 

iM  

1iM  

ih  iEI  

iM  

1iM  

ih  iEI  

RAA  

BM  

AM  

R  
A  

B  RBB  

 

R  

h  

A  

B  

2 1 2 12 2
1 2 1 2

A A A

B B B

M REI EI
M Rh h

 

     (7-1-13) 

Figure 7-1-6 Moment and rotational deformation 
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The increment of rotational deformation i  is the difference of floor angle. Therefore, 

1 1

1 , 2, , 1i i i i n
      (7-1-16) 

From the beam theory, the flexural deformation is 
3

12 2 A B
h hQ
EI

       (7-1-17) 

2

6) 2 ,A B
A B

M M EIQ R R
h h h

 

Therefore, the flexural deformation of i-th story is obtained as 
3

1 1
1 1 1

1
3

1

12 2

, 2, , 1
12 2

F

i i
Fi i i i

i

h hD Q
EI

h hD Q i n
EI

    (7-1-18) 

The shear deformation is then calculated substituting the flexural deformation from the story drift as 

Si i FiD D D         (7-1-19) 

 

Under the nonlinear push over analysis, it is generally assumed that the flexural component is elastic and 

only the shear component is considered as nonlinear. 

 

  

 

 

 

Figure 7-1-7 Decomposition of shear and flexural deformation 
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Therefore, the lumped mass model is obtained from the following procedure: 

 

In the first step of push-over analysis (in elastic stage) 
1) Calculate equivalent plane ( cbyaxz ) of each floor to obtain the flexural angles ia  or ib  

2) Calculate increment of angle 1i i ia a  or 1i i ib b  

3) Calculate the flexural stiffness 

12
i

i i i
i

hEI M M       (7-1-20) 

4) Calculate the flexural deformation 
3

112 2
i i

xFi i i i
i

h hD Q a a
EI

 or 
3

112 2
i i

yFi i i i
i

h hD Q b b
EI

  (7-1-22) 

5) Calculate the shear deformation 

Si i FiD D D        (7-1-23) 

 

From the next step, we use the same flexural stiffness obtained previously. 

6) Calculate increment of angle 

12
i

i i i
i

h M M
EI

      (7-1-24) 

7) Calculate flexural angle of each floor 

1

i

i k
k

a  or 
1

i

i k
k

b       (7-1-25) 

8) Calculate the flexural deformation 
3

112 2
i i

xFi i i i
i

h hD Q a a
EI

 or 
3

112 2
i i

yFi i i i
i

h hD Q b b
EI

  (7-1-26) 

9) Calculate the shear deformation 

Si i FiD D D        (7-1-27) 

10) The relationship between the shear deformation and the shear force is idealized as a nonlinear 

hysteresis model of the shear spring of each story. 
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b) Nonlinear flexural model 

 

To consider nonlinear flexural component, the model to separate shear deformation and bending eformation 

is used.  

Reference) Akira Wada, et. Al. “Response Control Design of Buildings”, Maruzen (in Japanese), 1998 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x
y ym ys h

       (7-1-28) 

y
ym
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M
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, x
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Q
k

, y
x

M
Q

h
 

2
2 1y x x x

x ym ys x
b s b s b s

M Q Q Q hh h h h Q
k k k k k k

  (7-1-29) 

Therefore, the relationship between the displacement and the force is expressed as follows: 

2

1,
1x x x x

b s

Q k k
h
k k

      (7-1-30) 

From nodal displacement, 

1 1 xA
x xB xA

xB

u
u u

u
      (7-1-31) 

bk  

ym  sk  

A  

B  

ys  

y  
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By substituting 

1 1 1, , , , , ,A i B i A i B i A i B iM M M M Q Q Q Q N N N N  

1 1 1, , , , , ,A i B i A i B i A i B i iu u u u h h  

the lumped mass model is obtained from the following procedure from the push-over analysis. 

 
1) Calculate equivalent plane ( cbyaxz ) of each floor to obtain the flexural angles ia  or ib  

and the vertical location at the center of gravity ,ci cix y  as ci ci ciz ax by c . 

2) Calculate shear deformation 

1 1 1 1s u h        (7-1-32) 

1 , 2, , 1si i i i iu u h i n     (7-1-33) 

Note that 1 for i ia  (x-direction) and 1 for i ib  (y-direction) 

3) Calculate the shear stiffness 

si si sik Q        (7-1-34) 

4) Calculate axial deformation 

1 1n         (7-1-35) 

1, 2, , 1ni i i i n      (7-1-36) 

Note that 
1

i

i ic i
k

z h  

5) Calculate the axial stiffness 

2 2 2 3 2 3 2 2 3 3M F h F h h Q h Q h , 1  

3 3 3 3 3M F h Q h , 2  

3F  

2F  

1F  

3 3Q F  

2 3 2Q F F  

1 3 2 1Q F F F  

3h  

2h  

1h  

1 1 1 2 1 2 3 1 2 3 1 1 2 2 3 3M F h F h h F h h h Q h Q h Q h  

3  

Figure 7-1-5 Moment and shear force of lumped mass model 

3 3N W  

2 3 2N W W  

1 3 2 1N W W W  
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ni i nik N        (7-1-37) 

6) Calculate moment at each floor 
N

i j j
j i

M Q h        (7-1-38) 

Note that 1 for (x-direction) and 1 for (y-direction) 

7) Moment of the bending spring is 
, 1, ,bi iM M i n   (7-1-39) 

The rotational deformation of the bending spring is 

1ii i i    (7-1-40) 

 

 

 

 

The bending moment and the angle are transformed to the equivalent shear force and the equivalent story 

drift as follows: 

    Equivalent shear force b
b

MQ
h

   2
b

b b bs b
kQ k
h

 

    Equivalent story drift b h  

   Equivalent stiffness 2, b
b bs b bs

kQ k k
h

 

After finding the tri-linear model for b bQ relationship, it is returned to bM relationship as, 

    , b
b bM Q h

h
, 2

b bsk k h  

 

In dynamic analysis, the rotational inertia at each floor is neglected. 

1iM  

iM  

biM  
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c) Trilinear modeling of push-over curve 

 

From the push over results up to the ultimate deformation (for example, up to 1/50 drift ratio), the 
relationship between the story drift (shear s , bending b ) and the shear force (shear sQ , bending 

bQ ) of each story is transformed into a tri-linear skeleton. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< Case 1 > 

When the drift ratio (drift divided by the story height) of the last point is less than the minimum value (for 

example, 1/1000) 

 

The skeleton is assumed to be linear.  

P1 (D1, Q1) 

The last point is P1 

K1 = Q1/D1 

P2(D2, Q2) 

D2 = 2×D1 

K2 = K1 

P3(D3, Q3) 

D3 = 4×D1 

K3 = K1 

 

 

 

 

 

 

P1 (D1, Q1) 

P2 (D2, Q2) 
P3 (D3, Q3) 

K1 

K2 

K3 

P1 (D1, Q1) 

P2 (D2, Q2) 

P3 (D3, Q3) 

K1 

K2 

K3 
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< Case 2 > 

When the last stiffness is large (for example, tangent stiffness > 0.1 K1 (initial stiffness)) 

 

P1(D1, Q1) 

Find initial stiffness K1 

Find Q1 that is the force when the tangent stiffness becomes 0.8K1 and determine D1 = Q1/K1 

P2(D2, Q2) 

The last point is P2. 

K2 is the stiffness between P1 and P2 

P3(D3, Q3) 

D3 = 2×D2 

K3 = K2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1(D1, Q1) 

P2(D2, Q2) 

P3(D3, Q3) 

K1 

0.8K1 

K2 
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< Case 3 > 

When the last stiffness is small (for example, tangent stiffness < 0.1 K1 (initial stiffness)) 

 

P1(D1, Q1) 

Find initial stiffness K1 

Find Q1 that is the force when the tangent stiffness becomes 0.8K1 and determine D1 = Q1/K1 

P2(D2, Q2) 

P2 is decided to be the same energy between push-over analysis and the model up to P3. 

P3(D3, Q3) 

P3 is the last point of push-over analysis 

K3 is the tangent stiffness at P3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1(Q1,D1) 

P2(Q2,D2) 

P3(Q3,D3) 

K1 

0.8K0 

K3 = tangent K 

K2 
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8. P-D effect 

 

The formulation in this chapter is based on the following book:  

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991 

 

a) Equilibrium of the beam with an axial load 

 

We consider equilibrium of the beam with a slight displacement with an axial load.  

 
Assumi ives 

 
00 vFxVM         (8-1-1) 

Therefore 

00 dx
dvFV

dx
dM

        (8-1-2) 

From the relationship, 2

2

dx
vdEIM , the governing differential equation for the deflection shape is 

02

2

04

4

dx
vdF

dx
vdEI         (8-1-3) 

 

The general solutions are, 
for compression loading ( 00F ): 

EIFkcxckxckxcxv /,sincos)( 0
2

4321 ,      (8-1-4) 

for tensile loading ( 00F ): 

EIFkcxckxckxcxv /,sinhcosh)( 0
2

4321     (8-1-5) 

 

EI v(x) 

x x 

M 

V 

F0 

M + M 

V  

F0 

Figure 7-2-1 Equilibrium of small beam segment slightly deformed 

x 

v 
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b) Geometric stiffness matrix of the beam with an axial load 

 

We assume that the axial force is constant and compressive. From the general solution, Eq. (8-1-4), 

at 0x  

321411
)0(,)0( ckc

dx
dvccvv      (8-1-6) 

Consequently, the deflected shape is 

 

xvkxkxckxcxv 1121 sin1cos)(     (8-1-7) 

 

Similarly at the end of other node, 

 

LvkLkLckLcvLv 11212 )(sin1cos)(    (8-1-8) 

1212 cossin)( kLkckLkc
dx

Ldv
     (8-1-9) 

 

Then, the coefficients, 21 , cc , can be arranged as, 

LL
vLv

c
c

CS
SC

21

211

2

1

)1(
)()1(

     (8-1-10) 

where,  
kLkLSkLC ,sin,cos       (8-1-11) 

 

Solving this equation by Cramer’s rule gives 

/)(1)(1 22111 SLCvCSLCvc    (8-1-12) 

/)1()1( 22112 CLSvSCLSvc    (8-1-13) 

where 

SC22        (8-1-14) 

 

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and 

shear force distributions can be obtained as 

kxckkxckEI
dx

vdEIxM sincos)( 2
2

1
2

2

2

    (8-1-15) 

21
2

03

3

)( kcEIk
dx
dvF

dx
vdEIxV      (8-1-16) 
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Calculating nodal loads, 1111 )(,)(,)0(,)0( MLMVLVMMVV , the stiffness matrix is 

2

2

1

1

2

2

22

22

2

3

2

2

1

1

)(.
)1(

)()1()(
)1()1(

v

v

SCLsym
CLS
SLCLSCL
CLSCLS

L
EI

M
V
M
V

 (8-1-17) 

 

c) Approximation of geometric stiffness matrix 

 

We simplify the geometric stiffness matrix to be linear in the loading F0. 

Using the series expansion for the sine and cosine terms, the determinant is, 

12/15/1
120/6/720/24/2/122

22

25

53642 C
SC

 (8-1-18) 

also 

15/1121 2
5        (8-1-19) 

We now do the expansion on the stiffness terms. For example, 

10/11215/1126/ 2
3

2
5

34
3

2
2

311 L
EI

L
EIS

L
EIk  

         (8-1-20) 

Substituting EILFLk /0
222 , 

10
1212 0

311 L
F

L
EIk        (8-1-21) 

In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as 

2

22
0

2

22

3

4.
336

34
336336

30
4.

612
264
612612

Lsym
L

LLL
LL

L
F

Lsym
L

LLL
LL

L
EIk   (8-1-22) 

We can write as 

 

GE kkk         (8-1-23) 

 
where, Ek : the element elastic stiffness, Gk : the element geometric stiffness 
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d) Implementation for beam element 

 

For beam element,  

B

A

B

A

B

A

LL
LL

L
EI

L
EI

M
M

22

22

3 42
24

21
122

    (8-1-24) 

Including node movement, 

B

B

A

A

B

A

u

u

LL

LL
1101

0111

      (8-1-25) 

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

A

u

u

Lsym
L

LLL
LL

L
EI

u

u

LL

LL

LL
LL

LL
LL

L
EI

u

u

LL

LL
LL
LL

LL

LL

L
EI

M
Q
M
Q

2

22

3

22

22

3

22

22

3

4.
612

264
612612

1101

0111

42
66

24
66

1101

0111

42
24

10

11
01

11

 

 

From (8-1-22), the geometric stiffness matrix will be 

2

22
0

4.
336

34
336336

30
Lsym

L
LLL
LL

L
F

kG      (8-1-26) 

 

Figure 7-2-2 Including node movement 

L  

A B 

A  

B  

A  

Au  
Bu  

B  

x 
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y 
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Therefore, the stiffness equation will be 

B

B

A

A

B

B

A

A

u

u

Lsym
L

LLL
LL

L
F

Lsym
L

LLL
LL

L
EI

M
Q
M
Q

2

22
0

2

22

3

4.
336

34
336336

30
4.

612
264
612612
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e) Implementation for column element 

 

 

yB

yA

yB

yA

yB

yA

LL
LL

L
EI

L
EI

M
M

22

22

3 42
24

21
122

  in X-Z plane  (8-1-27) 

xB

xA

xB

xA

xB

xA

LL
LL

L
EI

L
EI

M
M

22

22

3 42
24

21
122

 in Y-Z plane  (8-1-28) 

Including node movement, 

yB

xB

yA

xA

yB

yA

u

u

LL

LL
1101

0111

 in X-Z plane    (8-1-29) 

xB

yB

xA

yA

xB

xA

u

u

LL

LL
1101

0111

 in Y-Z plane    (8-1-30) 

Note that the matrix for node movement in X-Z plane is different from that of beam element. The 

force-deformation relationship in X-Z plane is then, 

Figure 7-2-3 Including node movement 

'l

'lB

A 

B 

yA  

yB  

yA

xAu  

xBu  

yB

'lA

yBu  

yAu  

xB  
xB  

xA  
xA  

X 

Z 

Y 
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yB

xB

yA

xA

yB

xB

yA

xA

u

u

LL

LL
LL
LL

LL

LL

L
EI

M
Q
M
Q

1101

0111

42
24

10

11
01

11

22

22

3  

yB

xB

yA

xA

yB

xB

yA

xA

u

u

Lsym
L
LLL

LL

L
EI

u

u

LL

LL

LL
LL
LL

LL

L
EI

2

22

3

22

22

3

4.
612
264

612612

1101

0111

42
66
24

66

 

         (8-1-31) 

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be 

 

2

22
0

4.
336

34
336336

30
Lsym
L
LLL
LL

L
F

k xG  in X-Z plane    (8-1-32) 

2

22
0

4.
336

34
336336

30
Lsym

L
LLL
LL

L
F

k yG  in Y-Z plane    (8-1-33) 

 

Therefore, changing the order of vector component, the force-deformation relationship of column will be 

 

zB

zA

zB

zA

xB

xA

yB

yA

yB

yA

xB

xA

zB

zA

zB

zA

xB

xA

yB

yA

yB

yA

xB

xA

zB

zA

zB

zA

xB

xA

yB

yA

yB

yA

xB

xA

u
u

u
u

LLLL
LLLL
LL

LL
LLLL
LLLL
LL
LL

L
Fu

u

u
u

K

M
M
N
N
M
M
Q
Q
M
M
Q
Q

000000000000
000000000000
000000000000
000000000000
00004330000
00004330000
00003336360000
00003336360000
00000000433
00000000433
00000000333636
00000000333636

30
22

22

22

22

0
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zB

zA

zB

zA

xB

xA

yB

yA

yB

yA

xB

xA

G

u
u

u
u

KK       (8-1-34) 

where, 

000000000000
000000000000
000000000000
000000000000
00004330000
00004330000
00003336360000
00003336360000
00000000433
00000000433
00000000333636
00000000333636

30
22

22

22

22

0

LLLL
LLLL
LL

LL
LLLL
LLLL
LL
LL

L
F

KG  (8-1-35) 

 

Then, applying translation of Equation (2-2-17), the constitutive equation of the column is; 

n

C

n u

u
u

K

P

P
P

2

1

2

1

       (8-1-36) 

where, 

iCG
T

iCCC
T

CC TKTTkTK      (8-1-37) 
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9. Unbalance force correction 

 

a) Procedure to correct unbalance force 

In nonlinear analysis, sudden change of spring stiffness sometimes causes severe error for estimating 
element force. For example, estimation of spring force 1if  is overestimated in Figure 9-1-1 and 

“unbalance force” is defined as, 

11 ii fff         (9-1-1) 
where, 1if  is the force on the nonlinear skeleton curve 

The most preferable way to minimize the error is to adopt iterative calculations such as 
Newton-Raphson method. However, this iteration may consume calculation time significantly. 
Therefore, the following simple way is adopted to correct unbalance force:   
 
1) Calculate unbalance displacement d  from the unbalance force f  

kfd /         (9-1-2) 

where, k is the spring stiffness 

2) Subtract unbalance displacement d from the increment displacement in the next step 
calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

d  
id  1id  

f  

k  

d  
i  

1i  

if  

1if  

1if  

Figure 9-1-1 Unbalance force 
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b) Unbalance force correction of MS model  

 

For the Multi-spring model (MS model) of Column element, the sum of the unbalance forces of 
nonlinear vertical springs in the member section is calculated as: 

5

1
,,

5

1 i
isici

i
fffN       (9-1-3) 

where icf ,  : unbalance force of concrete spring, 

isf ,  : unbalance force of steel spring 
The unbalance displacement is then calculated as: 

5

1
,,

5

1 i
isic

i
i kkNkND      (9-1-4) 

where ick ,  : stiffness of concrete spring,  

isk , : stiffness of steel spring 

In the next step calculation, the increment displscement of each spring is ajusted as follows: 

Ddd ii         (9-1-5) 
where id : increment displacement of i-th spring 
 id : adjusted increment displacement of i-th spring 

 
 

The same procedure is adopted for the MS model of Wall element. 

Figure 9-1-2 Unbalance force in MS-model 

x 

y 

2f  

1f  

4f  
sx  

3f  

5f  
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10. Calculation of ground displacement 

 

In STERA_3D, the ground displacement is calculated from the ground acceleration data using FFT method 

and filtering techniques based on the description in the following reference: 

 

Reference: Yorihiko Osaki, “Introduction of Spectral Analysis of Earthquake Ground Motion”, Kajima 

publishing corporation, 1981 (in Japanese) 

 

a) Discrete Fourier Transform 

Assume that the acceleration data is collected at an interval, NTt /  and consists of the 
N measurement data )1,,2,1,0( Nmxm , where T is the period of the data that 
corresponds to the duration time of data. The coefficient of a Fourier series is obtained as: 

1,,2,1,01 1

0

)/2( Nkex
N

C
N

m

Nkmi
mk     (10-1-1) 

The inverse discrete Fourier transform is 

1,,2,1,0
1

0

)/2( NmeCx
N

k

Nkmi
km      (10-1-2) 

 
b) Integration of the data in time domain 

Assume )1,,2,1,0( Nmym is the integration of the discrete data mx  in time domain. 

The data my  is obtained by the following inverse discrete Fourier transform: 

1,,2,1,0
2

1

0

)/2(

0
NmeStNdtxy

N

k

Nkmi
k

tmt

mm   (10-1-3) 

where, the coefficients kS  are obtained from the coefficients kC  as, 

N
CN

k
C

tN
v

S
N

k

k 0
12/

0

0
0

1Im
2

2
      

k
Ci

Nki
N
C

S k
k cos10 , *

kNkN SS  12/,,2,1 Nk  (10-1-4) 

N
C

S N
0

2/  
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The following band pass filter (Butterworth filter) in frequency domain is applied to the 

coefficient kS . 

( ) ( ) ( )B L HG f G f G f        (10-1-5) 

2

2( )
1

n
L

L n
L

f f
G f

f f
      (10-1-6) 

2
1( )

1
H n

H

G f
f f

      (10-1-7) 
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Figure 10-1-1 Butterworth filter 
 
STERA_3D adopts the following frequency parameters: 

0.1Lf  (Hz) 
20Hf   (Hz) 

( )LG f  ( )HG f  
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c) Calculation flow 
The ground acceleration data is integrated twice to obtain displacement data. Band pass filter is applied 

each time of the integration. The flow of calculation is summarized below: 

 

[1] From acceleration data to velocity data 

)1,,2,1,0( Nmxm  

FFT  Calculate Fourier coefficients of the data 

1,,2,1,0 NkCk  

  Eq. (10-1-4)  Calculate Fourier coefficients of the data of the integration 

 1,,2,1,0 NkSk  

Eq. (10-1-5) Apply band pass filter 

 1,,2,1,0 NkSh kk  

  IFFT  Calculate the data of integration by Inverse Fourier transform 

)1,,2,1,0( Nmym  

[2] From velocity data to displacement data 
 Repeat the above process again 
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11. Damage Index 

 

11.1  Damage Index of RC Members 

Reference:   

- Young-Ji Park, A. H. Ang (1985) “Mechanistic Seismic Damage Model for Reinforced Concrete”, 

Journal of Structural Engineering, ASCE 

 

1) Park and Ang Damage Index 

 

STERA_3D adopts the following damage index, so called Park and Ang damage index, to evaluate the 

structural damage under earthquake. 

m h m h

u y u u y u

E ED
Q Q

     (11-1-1) 

where 

m m y  :  maximum deformation under an earthquake, 

u u y  :  ultimate deformation under a monotonic loading, 

m   :  maximum ductility factor under an earthquake, 

u   :  ultimate ductility factor under a monotonic loading, 

y   :  yield deformation, 

yQ   :  yield strength, 

  :  parameter related to the cumulative loading effect, 

hE dE  :  dissipated hysteretic energy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11-1-1 Force-deformation relationship of the member 

 

yQ  

y  M  
u u y  

hE dE  
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The cumulative ductility factor is the ratio of the cumulative dissipated energy defined as 

h

y y

E
Q

       (11-1-2) 

The damage index can be rewritten as 

 m

u u

D        (11-1-3) 

 

2) RC Beam and Column 

 

Ultimate ductility factor 
According to Park and Ang (1985), the ultimate ductility factor, u , for reinforced concrete beams and 

columns is highly variable and depends on the failure mode of the member as shown in Figure 11-2.  

 

Figure 11-1-2 Ultimate ductility factor and failure mode (Park and Ang (1985)) 

 

In case of the flexural failure, the value is greater than 10. Therefore, in STERA_3D,  
15u   

is adopted for the nonlinear flexural springs at both ends of the reinforced concrete beams and columns. 
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Parameter  

The p . According to Park and Ang (1985), is 

calculated as, 

 00.447 0.073 0.24 0.314 0.7 w
t

l n p
d

   (11-1-4) 

where 

/l d  :  shear span ratio (replaced by 1.7 if /l d <1.7), 

0n  :  normalized axial stress (replaced by 0.2 if 0n <0.2), 

tp  :  longitudinal steel ratio as a percentage (replaced by 0.75% if tp <0.75%), 

w  :  confinement ratio. 

Figure 11-1-3 shows the comparison between the calculated and experimental results of . The applicable 

range of the above equation is  

1.0 / 6.6l d  

00 0.52n  

0.2 2.0w  

15.9 MPa < 'cf (concrete strength) < 41.4 MPa    (11-1-5) 

 

 
Figure 11-1-3 Parameter  (Park and Ang (1985)) 

 

The default values in STERA_3D are 
15u   

0.2         
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3) RC Wall 

 

There is not much study about the damage index of RC shear walls. Therefore, STERA_3D adopts 
arbitrary values for u  and . 

 

STERA_3D adopts 
15u   

0.05          

for the nonlinear flexural springs at both ends of the reinforced concrete wall.  

Also 
8u   

0.1          

is adopted for the shear spring of the reinforced concrete wall. 

 

4) Damage Index of group of members 

 

The damage index for a part of a structure, such as individual story and for the entire structure, can be 

evaluated as the weighting average of damage indices of structural elements in the part.  

n

part i i
i

D w D        (11-1-6) 

where 

 partD  :  damage index of the part of the structure 

n  :  number of elements in the part of the structure 

 iw  :  weighting factor of the i-th element. 

 iD  :  damage index of the i-th element 

The weighting factor iw  can be based on the dissipated hysteretic energy of each element as,  

,

,

h i
i n

h i
i

E
w

E
       (11-1-7) 
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11.2  Damage Index of Steel Members 

Reference:  

- Study on Seismic Performance for Super-High-Rise Steel Buildings against Long-Period Earthquake 

Ground Motions, Building Research Institute, Building Research Data, No. 160, 2014,7 (in Japanese) 

 

1) Steel Beam Connection 

 

a) Damage index based on fatigue curve 

The linear cumulative damage model known as the Miner rule is one of the frequently applied procedure 

to estimate the cumulative damage index (CDI) of element with random cyclic loadings. It is described as, 

1i

i i

nCDI
N

       (11-2-1) 

where 

 CDI  :  cumulative damage index 

in  :  number of cycles accumulated at strain level i  

 iN  :  number of cycles to fracture 

 
For the low cycle fatigue with the cyclic plastic deformation, the relationship between the strain amplitude 

i  and the number of cycles to fracture iN  is expressed by the Mason-Coffin equation as, 

 %i iC N       (11-2-2) 

or 

 

11

i
i

i

CN
C

      (11-2-3) 

It can be written as follows using the ductility factor i  instead of i ,  

 

11

i
i

i

CN
C

      (11-2-4) 

According to Figure 11-2-1 in the report “Study on Seismic Performance for Super-High-Rise Steel 

Buildings against Long-Period Earthquake Ground Motions” (BRI, 2014),  

4 10C   

1 3   

 
  

384



 
Figure 11-2-1 Fatigue curve for different connection types of steel beams (BRI, 2014) 

 

In this method, the number of cycles in  accumulated at strain level i  (or ductility factor i ) must be 

calculated using the Rain-flow method. 

 

 

 

385



Appendix) Rain-flow method 

Reference:  

- RAINFLOW CYCLE COUNTING IN FATIGUE ANALYSIS, Tom Irvine, 2018 

 
The Rain-flow algorithm is the method for counting fatigue cycles from a time history. 
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b) Damage index based on the maximum response 

Since it is an intensive work to record the time history of strain (or ductility factor) for all beams and 

calculate the damage index using the rain-flow method, a practical method is proposed using the maximum 

ductility factor and the cumulative ductility factor (BRI, 2014). 

 

The cumulative ductility factor is defined as 

h

y y

E
Q

       (11-2-5) 

 

 

 

 

 

 

 

 

 
The energy dissipation per cycle with the deformation of the maximum ductility m  is 

0 4 1m y yE Q       (11-2-6) 

Therefore, the equivalent number of cycles is 

0 4 1 4 1
y yh

e
m y y m

QEN
E Q

    (11-2-7) 

The number of cycles to fracture with the maximum ductility m  is 

 

1

m
fN

C
       (11-2-8) 

Therefore, the damage index is evaluated as 
1

4 1
e m

f m

NCDI
N C

     (11-2-9) 

 

 

 

 

 

 

 

yQ  

y  m m y  

0 4 1m y yE Q  

1m y  
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2) BRB (Buckling Restrained Brace) 

Reference:  

- Bucking-Restrained Braces and Applications, Edited by T. Takeuchi and A. Wada, JSSI, 2017 

 

a) Damage index based on fatigue curve 

The Miner rule is described as, 

1i

i i

nCDI
N

       (11-2-10) 

The Mason-Coffin equation for the relationship between the strain amplitude i  and the number of 

cycles to fracture iN  is expressed as, 

 %i iC N       (11-2-11) 

For the BRB (buckling restrained brace) damper, Takeuchi et al. (2008), proposed the following formulas, 

0.14% 0.5i iN  % 0.1%i   
0.49% 20.48i iN  0.1% % 2.2%i    (11-2-12) 

0.71% 54.0i iN  2.2% %i   

 

Figure 11-2-2 Relationship between strain and number of cycles to facture (Takeuchi et al. (1985)) 
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By combining with Coffin-Manson equations, 

1 1 1
0.14 0.49 0.71

0.1% 0.1% 2.2% 2.2%

, ,

0.5 20.48 54.0

i i i

i i i

i i i

n n n
CDI  (11-2-13) 

 
b) Damage index based on the maximum response 

Using the same concept as in the case of steel beams, the damage index is evaluated as 
1

4 1
e m

f m

NCDI
N C

      (11-2-14) 
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