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UPDATE HISTORY

STERA_3D Technical Manual Ver.5.5 is uploaded.

“5.5 Modal analysis” is modified including participation factor, effective mass, etc.
STERA_3D Technical Manual Ver.5.6 is uploaded.

7.4 Calculation of ground displacement” is modified changing band-pass filter.
STERA_3D Technical Manual Ver.5.7 is uploaded.

Ground springs are added.

STERA 3D Technical Manual \Ver.5.8 is uploaded.

“4.6 Mass matrix corresponding to independent degrees of freedom” is added.
STERA 3D Technical Manual Ver.6.0 is uploaded.

Radiation damping for ground springs is added.

External force by Wind is added.

Buckling hysteresis of a brace is added.

Pile foundation is included for ground springs.

Air spring is added for an external spring.

STERA_3D Technical Manual Ver.7.0 is uploaded.

For RC column and RC wall, the nonlinear bending springs independent in x and y
directions are introduced.

For Steel beam, the nonlinear shear spring for hysteresis damper is introduced.
Damage indices of members are introduced.

STERA_3D Technical Manual Ver.7.1 is uploaded.

The model of the direct input wall is changed to be the lumped mass model.
For external springs, models of the base plate and the pendulum spring are introduced.
STERA_3D Technical Manual Ver.7.2 is uploaded.

For base isolation elements, FPB (Friction Pendulum Bearing) is introduced.
STERA 3D Technical Manual Ver.7.3 is uploaded.

The formula of compression strength of Masonry element is changed.
STERA 3D Technical Manual Ver.7.4 is uploaded.

Viscoelastic damper is added to the passive damper.

STERA 3D Technical Manual Ver.7.5 is uploaded.

Viscoelastic damper is added to the shear spring of direct beams.

STERA _3D Technical Manual Ver.7.6 is uploaded.

Nonlinear model of the viscoelastic damper is modified.

Vertical viscous damper is added to the external spring.

The model of HDRB (high damping rubber bearing) is updated.
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1. Basic Condition

1.1 Coordinate

(1) Global Coordinate

The global coordinate is defined as the left-hand coordinate as shown in Figure 1-1-1.
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Figure 1-1-1 Global coordinate
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Figure 1-1-1 Global coordinate

v



(2) Local Coordinate

The local coordinate is defined for each element. The displacement freedoms and force freedoms are named
with subscripts indicating the coordinate direction and node name. For example, the local coordinate of a
beam element in Figure 1-2 is defined to have its x-axis in the same direction of the element axis. Also the

displacement and force freedoms of a beam element are expressed as shown in Figure 1-1-2.

z

Nivas

gr-l A I.LJ'JI_.” \f \y/ | gt
Displacement freedoms
y
{‘};_-[ Q:."ﬂ
Local coordinate
'I‘(f_r.-l A B 'M_l'ﬂ

Force freedoms

Figure 1-1-2 Local coordinate of a beam element



2. Constitutive Equation of Elements

2.1 Beam
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Figure 2-1-1 Element model for beam

Force-displacement relationship for elastic element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-1-1 is

expressed as follows:

3|;| _GI; 0
r'yA I'y ; y M'yA
ratl=l-—— —— 0 kM, (2-1-1)
5? 6El, 3EI, |' N,y
0 -
i EA

where, E, | g A and |' are the modulus of elasticity, the moment of inertia of the cross-sectional area
along y-axis, the cross-sectional area and the length of the element. The rotational displacement vector of the

nonlinear bending springs is,

6, [f, 0™,
EARENH %

where, fyA and fyB are the flexural stiffness of nonlinear bending springs at both ends of the element.



The force-deformation relationship of shear spring is

Qz = kzsz or S'z = (1/kz )Qz

From the relationship between shear force and moment,
M’ A

o Wi

yB
The end rotational displacement due to shear deformation is obtained as,

1 1
R CLE M T i el
k% k17

(2-1-3)
where, K, is the shear stiffness of the nonlinear shear spring. Then, the displacement vector of the beam
element is obtained as the sum of the above three displacement vectors.

g'yA T'yA ¢yA Ty M lyA
O =178 (+1P [+ :[fB] Mg (2-1-4)
s | |s, 0 0 N',
where,
‘f . I . 1 I . 1 i
A YT 1 P 1
y 3El, kI 6EI, kI
I 1
fol= f.+—- 2-1-5
[e] ®U3EL kl? (2-1-9)
Il
sym. _
i g EA |

[f5] is the flexural stiffness matrix of the beam element. By taking the inverse matrix of [f,], the

constitutive equation of the beam element is obtained as,

M IyA elyA elyA
My = [fa]_1 O = [kB] 0' s (2-1-6)
N Ix 5Ix 5Ix

where, [Kg] is the stiffness matrix of the beam element.



Including rigid parts and node movement

Including rigid parts and node movement as shown in Figure 2-1-2, the rotational displacement vector is,

{e'yA} B {eyA —r} _ (U = 2ol"0,5 ) (Upy + 2,16, )
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Figure 2-1-2 Including rigid parts and node movement
From node axial displacements, relative axial displacement is,
5Ix = 5XB - 5XA (2-1-8)
Therefore
0 o'
¢, [1 0 0 o] * A
0 vB 0 yB
0'st=/0 1 0 0 =[n,] (2-1-9)
- 5 )
5, 00 -1 1( » *
g O
Combining Equations (2-1-7) and (2-1-9),
_ -|u u
1 1 ZA ZA
On) |7 T 1+, 4 0 Ofjuy, Ug
Dol _ l -~ A, 1+2; 00 Ol _ (AR O (2-1-10)
5XA I I eyB eyB
0 O 0 0 1
§XB 5><A 5><A
0 O 0 0 1
- N 5XB §XB
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Out of plane deformation of beam
If we consider out-of-plane deformation of beam in case of flexible floor, as shown in Figure 2-1-4, the

rotational displacement vector is,

{gle} _ {ng _T} ;- (uyA _;LAllng)_(uyB +ﬂvBII'9zB)

0' Op—7 I'
1 1 1 1 Uya
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Figure 2-1-3 Beam displacement with rigid connection (X-Y plane)
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From global node displacement to element node displacement

Transformation from global node displacements to element node displacements is,

u ZA
u B ul
0 u
=l @113
05 :
5XA u n
S

The component of the transformation matrix, [T,z ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

9' ul ul
.yA _ U, _ u,
0t =e ATk 2t =Tk (2-1-14)
5 : :
u u

n n

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,

dep=| 0 fz O0|JMy (2-1-15)
s, ) |11 5| UNY
k,I' kI
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In case of Y-direction beam

Z Z
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X Y
Local coordinate of Y-beam Global coordinate

Figure 2-1-4 Relation between local coordinate and global coordinate

In case of Y-direction beam, the axial direction of the beam element coincides to the Y-axis in the global

coordinate, transformation of the sign of the vector components of the element coordinate is,

X 0 1 0}[X
y =|-1 0 oY (2-1-16)
z Y —Beam O 0 1 Z Global
Therefore
Uza 1 [ U Uoa
Ug 1 0 Uz Uz
0 -1 o o
" = * =[sgk (2-1-17)
HyB -1 exB exB
5><A 0 1 5VA 5yA
5XB Y —Beam L 1— 5yB Global 5yB Global
Transformation from the global node displacement to the element node displacement is,
uzA
uzB ul
exA L‘|2
o (- el (2-1-18)
X
5yA un
5yB
Transformation from the global node displacement to the element face displacement is,
u u
euyA ul u1
] 2 2
0 v (= [nB ][A B ][SB ][Tin - (= [TyB . (2-1-19)
5 : :
g u u

n n
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Constitutive equation

Finally, the constitutive equation of the X-beam is,
Pl ul ul

F:2 =T [ke [Tee ] UEZ K, u52

P, u U,
For Y-beam,

R u, u,
el kel =l
P, u 0
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2.2 Column

Element model for column is defined as a line element with nonlinear bending springs at both ends and two

nonlinear shear springs in the middle of the element in x and y directions as shown in Figure 2-2-1.

X-Z plane Y-Z plane

Figure 2-2-1 Element model for column

Force-displacement relationship for elastic element
In the same way as the beam element, the relationship between the displacement vector and force vector of
the elastic element is,

Cor I'
7 3EI,  6EI, |[M'
AL = I'y " y A in X-Z plane (2-2-1)
T'g L A AR\ vB
| 6El, 3E,
o
1 Ml
{T'XA} _ 3EIIIX 6II,EI x { le} in Y-Z plane (2-2-2)
T xB JE— - M xB
| 6EI,  3El,
The axial displacement is,
5 =N (2-2-3)

7z EA z
The torsion angle by torque force is,

Il
0, =—-T' 2-2-4
‘Gl ! (2-2-4)

where, G and |, are the shear modulus and the pole moment of inertia of the cross-sectional area.
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Force-displacement relationship for nonlinear bending springs

Case 1: In the case that bending springs in x and y directions are independently defined

X-Z plane Y-Z plane

M,

Figure 2-2-2 Element model for column

The rotational displacement vector of the nonlinear bending spring is defined independently,

Pp = T My, Fu =M, atendA (2-2-5)

b =TeMyp, dg=FfzM,; atendB (2-2-6)

where, f ,, f,,, fg and f,; arethe flexural stiffness of nonlinear bending springs at both ends of the

yB
element.

It can be expressed as

¢yA M 'yA fyA

Pon [ = [pr Mt [ fu]= fu atend A (2-2-7)
& N*.s L 0

e Mg g

¢xB = [ fPB] M IxB ' [ pr] = fxg atend B (2-2-8)
€8 N L 0
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Case 2: In the case that nonlinear interaction between moment and axial components is considered

Nonlinear interactionM, — M y ~ N, is considered in the nonlinear bending springs,

¢yA M ' yA

Pun (= [pr]< M', atendA (2-2-9) "5 €
Ean NIzA \/%\fwnﬂ;’¢
yE ¢|F.|’

Dye Mg

D ¢ = [pr]< M'; atendB (2-2-10)

€ N’
where, [f,] and [f] are the flexural
stiffness matrices of the nonlinear bending springs.
Therefore, the force-displacement relationship of
nonlinear bending springs is,

¢yA M IyA
Prn M’ My, ¢
& f 0 ||N '
ZA — [ PA] IzA (2_2_11) h,r s E:.!
¢yB 0 [pr] M yB
38 M'g Figure 2-2-3 Nonlinear bending springs
€m N IzB

Rearrange the order of the components of the displacement vector and change the node axial displacements
into the relative axial displacement,

$s] [1L O 0 0 0 O] P Pin
$s| [0 0 0 1 00 P P
bat=[0 1 0 0 0 off°*t=[n ] (2-2-12)
des| |00 0O 0 1 0 Do Pyo
€, 00 -100 1)% P
- “€s €m

The force-displacement relationship is then expressed as,

¢yA M IyA M 'yA

¢yB [f ] 0 M IyB M 'yB

¢XA = [n i [n ]T M 'xA = [f ]4 M I><A (2'2'13)
Lo [l AT

¢XB M xB M xB

&, le le
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Force-displacement relationship for nonlinear shear springs

Case 1: In the case that shear springs in x and y directions are independently defined

X-Z plane Y-Z plane

M

i

M

Figure 2-2-4 Element model for column

The force-deformation relationship of shear spring is
' k 0 |[s S k 0 '
QIX — SX X ’ X — ]7/ SX QIX (2_2_14)
Q y O kSV Sy SV 0 ]'/ks)’ Q y

From the relationship between shear force and moment,

M’
Q] [y yir o o]|My,
{Q'y}{ 0 0 11" 1 } M, (@215)
M'XB
The end rotational displacement due to shear deformation is obtained as,
Mya yIro /1" 0 _1/(ksxll) 0 |
e | |10 0 |[s] |y oo |k, 0 J[@,] |Y(kd) 0 g
| |0 yrfls )T o w0 ke )T 0 Yki)le,
7e) O YU 0 I 0 (k)]
(k) 0 M, M,
RS A VRV R R R [V oM
0 Yk o oy oyr|Im,[ U My,
0 (kM) Mg Mg
) ) (2-2-16)
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k2 Kyl
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Figure 2-2-5 Nonlinear shear springs

The force-deformation relationship of shear spring is

Q, Sy I 1y n,

Qyr=lka]is, p=lke ]| I =K' {n, (2-2-18)
N', &y 1]|e, &

1y Q

(= [ fsp} Qyr [ fsp] - [k » Tl (2-2-19)
&, N',
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From the relationship between shear force and moment,

M’ M’
Q', 71" Y1 o 0 O M’ M’
Q,r= 0 0 I'" Y1I'" OxM', = [LS] M, (2-2-20)
N', 0 0 0 0 1M, Mg
N', N,
The end rotational displacement due to shear deformation is obtained as,
Myn 1 | 1 | M’y M’
Ty 1 y 1 M'yB MIyB
Nar=| 1 mot=| 1 | [L] M =[f]s M (2-2-21)
Mg 1 &, 1 Mg M' 5
Lo i 1] | 1] (8 N,
where
_1 ] I fll le f13 ]
l f11 f12 f13 fll f12 f13 ]'/I I 1/' I 0 O O
f21 fzz f23 [Ls] = f21 f22 f23 0 0 1/' I 1/' "0
f3l f32 f33 f21 f22 f23 0 0 0 0 1
L 1_ L f31 f32 1:33_

B 1 ' ' 1 T (2-2-22)
fll/l fll/l f12/| f12/| f13
f

fn/l ' fu/l I f12/| I f12/| I

= 1:21/|I le/ll fzz/ll fzz/ll f
f21/| I f21/' I fzz/l ' fzz/l I P

_f31/|' f31/|| fsz/ll fsz/lI f

Both cases can be written in

nyA I\/I'yA

77yB M'yB [ f ] O

Mo b= [ fs] M, L [ fs] _ { st O} (case 1), [ fs] = [ fsz] (case 2) (2-2-23)
77XB Mle
e N,

Sz

The displacement vector of the column element is obtained as the sum of the displacement vectors of elastic

element, nonlinear shear springs and nonlinear bending springs,
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elyA T 'yA ¢yA 77yA MIyA
o yB 7' Dy Ty Mg
7 ' M'
I><A _ T'xA n Dxn n a _ [ fc] I><A (2-2-24)
0 T 8 Py e M'sg
5‘2 5 I IZ 82 gSZ N 'Z
9‘2 9'2 elastic element O bending spring O shear spring T 'Z
The flexural matrix [f.] is;
— 1 ) 1 -
3El,  6EI,
L 0
3El,
o
[f.]= 3El, 6||;|X N
3EI,
1
EA |
sym. —
L Gl Z lelestic element
i f pll f pl2 f p13 f pl4 f p15 O_
fp22 fp23 fp24 fp25 0
f p33 f p34 f p35 O +
fp44 fp45 0
fos O
_Sym' O_ bending spring
Tf.] ©
%] } (2-2-25)
0 oo
L shear spring

By taking the inverse matrix of [f.], the constitutive equation of the column element is obtained as,

M'yA glyA elyA
M'VB Q'VB H'VB
MIXA -1 ele ele

=|f =k 2-2-26
we (=Ll g =l ) (2-2:26)
le 5'2 5'2
TIZ 0'2 H'Z
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Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

Q'YA G'yA
9'yA 1 G‘yB H‘yB
0 1 0 0" 0"
HIXA — l ele — [n ] ele
QIXB 1 5ZA ¢ 5ZA
o', 0 -1 1 O O
o', i -1 1|6, 0,,

HZB HZB

Including rigid parts and node movement,
_E. E. I+4, g
s |11
g'yB — F F )’A 1+ ﬂ’B
O 1 —= 1+, A
0| _ ]
Sal TR S
528
ezA
928 0
B w,
T Uy
Agl'
&-.'E‘ 4 :IIH' Vit
& \
“ E.JH ||
a. .
. ';
t

Al '\ i
A 1 &Ti

Figure 2-2-6 Including rigid parts and node movement
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u XA u XA
Uyp Use
O, O,
05 05
u VA u VA
u VB u vB
0, = [Ac ]< 0.,
HXB GXB
é‘ZA 5ZA
528 528
O, O,
O O
(2-2-28)
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From global node displacement to element node displacement

Transformation from global node displacement to element node displacement is;

cC c o & <
S % T » 3
c
S

S
>

S
@

(2-2-29)

The component of the transformation matrix, [T,.], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

Q'yA

elyB u, U

o' u u

Q.XA = [nc ][Ac ][TiC ;2 = [Tc N
xB .

5'2 ul’l un

H'Z

Constitutive equation

Finally, the constitutive equation of the column is;

P, u,

SN

P u,
where,

(2-2-30)

(2-2-31)

(2-2-32)

23



Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from

¢yA
(DXA
Eon
(DyB
¢xB
%)

and

T :[fsp]

Sz

il

xB

Z_ZZZZ

B

:y =[fsp][|‘s]

z

=z QO O

ENIURY
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2.3 Wall

Element model for wall is defined as a line element with nonlinear bending springs at both ends and three
nonlinear shear springs; one is in the middle of the wall panel and others are in the side columns as shown in
Figure 2-3-1.

Figure 2-3-1 Element model for wall

Force-displacement relationship for elastic element

In the same way as the beam element, the relationship between the displacement vector and force vector of
the elastic element is,

Bk I
7' - M’
{ .yAC} _ 3E||.° 6||.E|° { 'yAC} in wall panel (2-3-1)
T yBe _ - M yBc
AR
o
1 M'
{T'xAl} _ 3E||.1 6||'E|1 { 'X’“} in side column 1 (2-3-2)
T sB1 _ M xB1
| 6EI,  3EI,
I' o r
1 M'
{T'xAz} _ SEII'Z 6||'5| 2 { 'XAZ} in side column 2 (2-3-3)
T 82 _ - M xB2
6EI, 3EI,

The axial displacement is,
{0 I' 1
o = a N c (2'3'4)
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Force-displacement relationship for nonlinear bending springs

Nonlinear interaction M, — M y~ N, is considered in the nonlinear bending springs,

1 -
N' e s €.

1
M' oo P

"wrml » Wem 0 A O M'm: ' 'r'ﬁ'm:

A ’ i A y
M rr.ﬂ * ¥ -'wr.;.:: s 95:.1:-
M’ yde 3 é.-«-

Figure 2-3-2 Nonlinear bending springs

¢yAc M IyAc
M ]
P = [pr AL atend A (2-3-5)
¢><A2 M xA2
ngc N 'zAc
¢yBc M IyBc
M 1
Per | _ [£,. 0 "2 atend B (2-3-6)
¢XBZ M xB2
€28c N5

where, [f ] and [f ] are the flexural stiffness matrices of the nonlinear bending springs. Therefore,
the force-displacement relationship of nonlinear bending springs is,
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Pync M')ac
P M
Punz Mn2
Eonc _[[pr] 0 } N e
ba| | O [fal]|Me
D1 M1
D2 M6z
€Bc N".gc

(2-3-7)

Rearrange the order of the components of the displacement vector and change the node axial displacements

into the relative axial displacement,

il Bee] (B
. ) bos|  |d
b 1 Deaz P
Per [ = 1 P | [np]< b
b 1 Dyec Dyee
by 1 Deer Do
g 1 1 Do Do

B “ (€ Epe

The force-displacement relationship in Equation (2-3-7) is then expressed as,

¢yAc M 'yAc M IyAc
¢yBc M 'yBc M IyBc
¢XA1 M 'xAl M I><Al
¢xBl :[np{[pr] ° }[np]T M'e1 :[fp]< M1
¢ 0 [f pB ] M M’
XA2 XA2 XA2
¢xBZ M I><BZ M 'xBZ
€ N Izc N 'zc

Force-displacement relationship for nonlinear shear springs
The force-deformation relationship of shear spring in the center is

Q'xc = kschc ) Sxe = (]/ksc )lec
’
QIXC = I I I ' |yAC}
Y ]{M

The end rotational displacement due to shear deformation is obtained as,
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RERETE I 2 k1? |
Ty | _ Y S = Y AWk )Q =] % * L inwall panel  (2-3-10)
77yBc _]/I ]/I 1 1 M xBc
kscl'2 kscl'2
1 1
k. 1? k1% | (M
{nx’“} = 51 S;- {M'W} in side column 1 (2-3-11)
g1 xB1
i ksll'2 ksl|'2
1 1
k1% k. I? | (M
{UXAZ} — Si s;- {Mlez} in side column 2 (2-3-12)
anZ xB2

12 12
Ke,l Ke,l

where, K., K, and Kk, are the shear stiffness of the nonlinear shear springs.

The displacement vector of the column element is obtained as the sum of the displacement vectors of elastic

element, nonlinear shear springs and nonlinear bending springs,

HlyAc leAc ¢yAc 77yAc M |yAc

elyBc leBc ¢yBc nyBc M |yBc

Oy T P T M

O (=17 e +9 P 3ot = [fw]< M1 (2-3-13)
' a2 T'n2 P Mnz M2

O'seo T'g2 Pos2 Txe2 M2

5IZC o' IZC elastic element € bending spring 0 shear spring N 'ZC

The flexural matrix [f,, ] is;

I' I' ]
3El,  6EI,
L
3El,
oo
3El,  6EI,
Il
fw = +
[ W] 3E|l
I' B I’
3El,  6El,
Il
sym.
y 3El,
L
L EAC elestic element
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fp11 fp17
: +
_fP” fp77 bending spring
Sl 1 -
k12 kI?
1
k,I?
1 1
kJ?  kgl?
1 (2-3-14)
k1"
1 1
k,I?  Kk,I?
sym. L -
K,
L 0] shear spring

By taking the inverse matrix of [f,, ], the constitutive equation of the column element is obtained as,

M 'yAc ‘9IyAc H'yAc
M 'yBc elyBc H'yBc
M 0w 0
Mg ¢ = [fw ]71 O'er (= [kw ]< 01 (2-3-15)
M a2 O a2 e
Mgz 0'g2 062
N, o', o',

Including rigid parts and node movement

Change relative axial displacement and torsion displacement into node displacement,

elyAc 1 'yAc IyAC
el 5 1 H yBc 9 yBc
ely ‘ l HIXA]. elel
XAl
9' 0!
O'er = 1 .XBl = [nw ]< .XBl (2-3-16)
9 xA2 9 XA2
0‘XA2 1 1 1
61 1 9 xB2 0 xB2
xB2 5! 5-
§IZC . 1 1 ,ZAC IzAc
- - 5 zBc 5 zBc
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Including rigid parts and node movement,

| =

1+, A

| =

Ay 142,

1+ 4,

| =k

An

From global node displacement to element node

Transformation from the center displacements to the node displacements is,

a

Vi —2

W

s~
=le

=S
s|e

05 05

05 05
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uxAc
h uch
eyAc
eyBc
Uya
Ag Ug,
1+ 2, O =
1 1 exBl
TR TR Uyno
1 1 uyBZ
- = 2 1+2
|' |' A e 1 HXAZ
1 exBZ
- 5ZAC
5280
(2-3-17)
displacement
A
4., -9,
g =t
5. W
.............. . . O,+d.,
5 == £2
. 2
Usat Uyt
O O
5zA2 5ZA2
U,g1 Usp1
Ot .81
5232 5182
R o e
Up, Uyey
1 On O
1 051 0,51
1 Uao Uya
1 Uis, Uygo
exAZ exAZ
0, 0,
| ez > (2-3-18)

XAcC
xBc

yAc




Transformation from the global node displacements to the element node displacements is;

=
=

SIS
®

A2

[

xB1

zB1

SIS

N

B2 u1

<
S
|
—
£

(2-3-19)

& <
<
W
@

x

3
=

=]

)

xB1

yA2

<
on)
N

xA2

QQ € C

xB2

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

elyAc
0'

e ul ul
6'

uXAl u2 u2
Oer [ = [nw ][AW ][DW ][TixW (T [wa . (2-3-20)
P : :

'xA2 Un Un
0 xB2
5IZC

In case of Y-direction wall
Z Z
y X
X Y
Local coordinate of Y-wall Global coordinate

Figure 2-3-4 Relation between local coordinate and global coordinate
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In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X

y =
z Y -Wall

Therefore

XAl

SIS
=

D E & & =
< < ~< < ~N ~N
> [os} w Z w ss)
N - =3 N -

<
@
N

S o € C
b3
N

xB2 )y —wall

0 1 0fX
-1 0 ORKY
0 0 1|/Z
1
1
1
1

Global

NQ(’NQ’}‘<C
£ E R

o, €
~ <
w os]
(= -

B2

~N

XAl

>
@
ey

> £ = >

E

>

yB1
XA2
xB2

yA2

QQ o & <

<
@
N

Global

(2-3-21)

Global

(2-3-22)

Transformation from the global node displacement to the element node displacement is;

c

yAl

ZAl

SRS

~N

A2
yB1

zB1

S O &

N

B2

&

xB1

yAl

T £

yB1

c

XA2

e

xB2
eyAZ
HyBZ
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Transformation from the global node displacement to the element face displacement is,

o'
elyBc
0 i
0'er (= [nw ][AW ][DW ][‘9W ][TixW
Q:XAZ u ) u )
0 xB2

5|

yAc
ul ul

= [TyW u:2

ZC

Constitutive equation

Finally, the constitutive equation of the wall is;

P Uy
P u
:2 = [K XW -2
Pn u n
where,
[K XW ] = [wa ]T [kw ][wa ]
For Y-wall,
F)l ul
P. u
:2 _ [K W :2
Pn u n
where,

[y J= T T D T

Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from

33

(2-3-24)

(2-3-25)

(2-3-26)

(2-3-27)
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XC
yl

y2

(oyAc
Py
Pyaz
ngc
¢yBc
Pyp1
¢XB 2

zBc

SXC

w

yl

w

y2

M IyAc
M I><Al
M le2
_ I: fPA:I 0 N 'zAc
0 [pr] Mg
M lel
M 'xBZ
N 'ch
l/kSC Q'XC
]/ksl Qlyl =
]‘/k52 QIyZ
[ fou]
0
1 0
k. I
1 0
kI
1o
i Ke,l

[ fow ]

1/ kSC

M
M'XAl
M2
N
M
M

yAc

zAc
yBc
xB1

xB2

N 1

]'/ksl

1/k52
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v
v
v
N
"
v

yAc
XAL
XA2
ZAc
yBc
xB1

xB2

zBc

:[pr]

M'yAc
M
M
NE
M
M
M

XA2
ZAc

yBc
xB1

xB2

zBc

(2-3-29)

z=<=z<X<

yAc

XAl

ZAC

yBc
xB1
xB2

2Bc




Furthermore, in the same way as Equation (2-3-8),

M ]
M |yAC M IyAc
I XAl M |yBC
M XA2 MI
N [ XAl
" IZAC — [n p]T M lel (2-3-30)
yBe !
1 M XA2
M xB1 [
Ml M xB2
'XBZ N |ZC
N zBc

Therefore, the nonlinear spring displacement vector is obtained from the element face displacement as,

Dyac

Pyt

Dxn2 M 'yAc
Eanc M 'yBc
Pyge M
D1 (= [ fow :||:np ]T M 61 (2-3-31)
Pua2 M2
€me M,
Mye N
T

M2
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In case of direct input wall

Direct input wall model is defined as a line element with a nonlinear shear spring and a nonlinear bending

spring in the middle of the element as shown in Figure 2-3-1.

MI‘

yde

Figure 2-3-5 Element model for wall

This model can be used as an alternative model so called the lumped mass model representing the restoring
force characteristics of each layer in the analysis of high-rise building as shown below. The detail of the
model is described in Chapter 7.1

Flexural-shear lumped mass model

PH ,
lexure

RF

97 Shoar
26F

2aF

24F .
> o 2
Lumped 22F )

mass Shear delermalion A
model 5H i nonlincar) Hysteresis

aF
aF
2F

Flexural deformation
{linaar)

Figure 2-3-6 Lumped mass model of high-rise building
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STERA _3D adopts the formulation to have nonlinear shear and bending springs of the element.

Figure 2-3-7 Nonlinear bending and shear springs

Force-displacement relationship

The story drift angle, Hy , is composed of the shear component, &, , and the bending component, Qym .

ys '

0, = % =0,+0,, = % + 6, (2-3-32)

where, O, isthestory driftand O, is its shear component. In a matrix form

5,=[1 h] [szj (2-3-33)

m

The nonlinear shear spring is defined as
Qx = ksé‘xs (2'3'34)

The nonlinear bending spring is defined as

M, =K., (2-3-35)

M
By considering the relationship Q, = Ty , the force vector of the element is

Q) [1
(M y] = |:h}QX (2-3-36)

Therefore, the relationship between the story drift and the shear force is expressed as follows:

ot o[t 23 e f (e

Q. =k, K,=7—"< (2-3-37)

XX X 1 h2
7+7
ks kb
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Including node movement
The relationship between the shear spring displacement and nodal displacement is,

From nodal displacement,
Oy =Ug — Uy, (2-3-38)

In a matrix form

S, =[-1 1]{““} = [AL]{UXA} (2-3-39)

uXB uxB

From global node displacement to element node displacement

Ueac | 1 U | Uyat A
15 R P R

Transformation from the global node displacements to the element node displacements is;

ul
u u
{ xAl}:[TiXL] ; (2-3-41)
Uxes :

u

n

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the spring displacement is,

ul ul
_ U, . U,

S =[A ][Oy [T ]s ¢ =[] : (2-3-42)
u, u,

Constitutive equation
Finally, the constitutive equation of the lumped mass model is;

R Uy
F:z =[K] : (2-3-43)
3 .

where,

(K ]=[Tu] [k [T ] (2-3-44)
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Transformation matrix for nonlinear spring displacement

The nonlinear spring displacement vector is obtained from the element face displacement as,

(g:j ) F/(I;s 1/?% } ( 'ayj ) {l/(;( S h/okb } R (2-3-45)
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2.4 Brace

Element model for Brace is defined as a truss element with a nonlinear axial spring and pin-supported at both

ends as shown in Figure 2-6-1.

h

Y

Figure 2-4-1 Element model for brace

Force-displacement relationship

/ J(.r-t‘ E':I.'J fv.? ¥ ﬁr.’-\
3

(Brace 1) (Brace 2)

Figure 2-4-2 Local coordinate

The relationship between axial deformation and axial force of the truss element is,

N, =k,0, (2-4-1)
N, =k,0, (2-4-2)
Replacing with the nodal force and displacement in local coordinate along the element,

N1 == le = f~4x’ 51 :U4x - Jl (2-4-3)

X

(2-4-4)
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In a matrix form,

lFj‘lx
a,
l.'le UZX
S, -1 0 0 1|0 -1 0 0 00 0 1 O]l -
H= el oo} @4
5, 0 -1 1 o0}|G,, 0 0 -10 10 0 0}t
0, Uy,
Uy
J4y
f~x1 __1 0
AN
1:mlx _l O sz O _1
f 0 —1{(N - | f 0 O0]|[N N
fol ! —>{f}: fal _ =, It (2-4-6)
f,, 0 1[N, f, 0 1]|N, N,
F4x 1 O FZS O 0
ARE:
Fz4 _O 0_

From Figure 2-4-3, the relation between the nodal forces in local coordinate and those of global coordinate
is,
= f,cos0+ f, sing

fxl
~ ] for Brace 1 (2-4-7)
f,=—f,sin@+f, cosd

and

—h

,=—f,c080+ f,,sin@

X

for Brace 2 (2-4-8)

l

—

o =—T,sind—f,,cos0

Eq. (2-4-8) can be also obtained from the Eq. (2-4-7) by replacing 6 by (7z - 9) and using the formulas
sin(z — @) =siné, cos(z — @)= —cosé .

41



| w

'f:l CGSE,/ \ 1Jr:l Sing
w* [, cosd

Jf iﬂ

:f;‘l sin@
(Brace 1) (Brace 2)

Figure 2-4-3 Coordinate transformation

In a matrix form,

f~x1 ¢ S fxl fxl
f~zl —S c le le
sz —C S fx2 fxz
f s —c f i
izz — 72 — [Cb] 72 (2_4_9)
fx3 -C S fxs fxa
1713 -S —C f,, f,
FX4 c S fx4 fx4
f24 Local L -S C_ fZ4 Global fZ4
where
w . h
c:cose=|—, s:sm¢9=T
since [C,JC,I =1, [C,] isan orthogonal matrix, therefore,
c.J -[c,] @410
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In a similar manner, from Figure 2-4-4, the relation between the nodal displacements in local coordinate and
those of global coordinate can be obtained as,
u,=u,cosé—u,sind

o - for Brace 1 (2-4-11)
u, =u,singd+u, coséd
and
u,=-U0,cosd—-U,sino
X2 X2 72 for Brace 2 (2-4-12)

u,, =u,sind-u,,cosd

Eq. (2-4-12) can be also obtained from the Eq. (2-4-11) by replacing 6 by (72' - 0) and using the formulas
sin(z — @) =siné, cos(z — @)= —cosé .

| |

U, =u,sind+u_ cosf 2

~ U, =-t,co80-u_,sin@
i, 2 2 =2

”ll =ﬁ,‘|C{}SE—E:| SiI'If? z2

Figure 2-4-4 Coordinate transformation

In a matrix form,

Uy c -5 Uy Uy
uzl S c uzl uzl
U, —C =S GXZ JXZ
Uz, _ s =C Uz, —[C ]T Uz,
Uy —-C =S l’Ix3 ’ l"]‘><3
U, S —C Uz U,z
Uy C =S ||Uy Uys
U, Local L S c _ U, Global U,
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The stiffness matrix of brace element is,

{'le}{kol IZH;E} or (N} = el (2-4-13)

Where
= Ja k=, e, T ) fu}=n,Jc, Ju} (2-4-14)

(f=fe.]}{f)=[c. T InT {N} (2-4-15)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is;

{U} = [TixBr (2'4'16)

The component of the transformation matrix, [T. . ], is discussed in Chapter 4 (Freedom Vector).

ixBr

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

1= TNl = I I, T ' <[ 17

n n

Constitutive equation

Finally, the constitutive equation of the brace is;

P u,
sz =K ] u:2 (2-4-18)
3 0,

where,

[Koer = [Ter ] [ker T ] (2-4-19)
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In case of Y-direction brace

X Y

Local coordinate of Y-wall Global coordinate
Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction brace, transformation of the sign of the vector components of the element coordinate

is,
X 0 1 0}[X
y =|-1 0 Y (2-4-20)
Y -Beam O 0 Global
Therefore
Ui Uy Uy
U, Uz U,
l'Jx2 u y2 u y2
u u u
z2 — z2 72 (2_4_21)
ux3 u y3 u y3
qu uz3 UZ3
ux4 u y4 u y4
u24 Y —Brace L 1_ u24 Global uZ4 Global
Transformation from the global node displacement to the element node displacement is;
ul
u2
u}= [Tinr : (2-4-22)
un
Transformation from the global node displacement to the element face displacement is,
ul
u2
{5} = [TyBr : ' |_TyBr J = [nb ][Cb ]l.Tinr J (2_4-23)
u

n
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Constitutive equation
The constitutive equation of the Y-direction brace is;

Pl u,

F?Z =K e uf (2-4-24)
P, .

where,

Ko =T [ s T ] (2-4-25)
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In case of K-brace (or Cheveron brace)

3 4 —
h
1 2 —
I

3 6 6

-

I'= E—] +h?

12

1 5 5' 5

For the left half part, as we defined before for the ordinary brace, the stiffness equation of brace element is,

() =[] ), k] =[c.T [n,J [k} [n, (2-4-26)

{f }L = {fxl le fx5 fzS fx3 fz3 fx6 sz}T

T
uxl uzl ux5 qu ux3 uzs uxG uzG}

kO [n]_-10000010
0 k| 10 0 -1 01000

|
w
|
(@}
—

[Cb]: , C=cosé’:%2), s:sinH:F
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For the right half part, in the same way, the stiffness equation of brace element is,

{f e = [kl dufe k] =[C,T'[n,T lk~JR [n,IC, ]

where

{f }R = {fxs fzS fx2 sz fx6 sz fx4 fz4 }T

{U}R:{UXS Us Uy Uy Ug Ug Uy uz4}T

We can express the nodal displacement vector as,

x1 x1
Hal Ua
uxl ux2 ux2
——u—zl-- 1 1 1 1 ! __u_zf__ uzz
1 1 I
ux5 __[}]_i___i____i___i___ :___ ux3 ux3
1
R 0
ux3 ___:___:_EI:]J'___:____E___ ux4 ux4
1 ! 1 1
Uy A £ U Uzs
u u u
X6 x5 x5
uze qu qu
ux6 ux6
uzG uzG
uxl uxl
uzl uzl
ux5 ux2 ux2
__u_zﬁ_ R . . \ \ . uzZ u22
sz : : : : [1] : ux3 ux3
TP L fL
ux6 : : : i :[1] ux4 ux4
_________ S S
1 ! 1 1 [
UZG ' ' :[1] ' ' u,, U,
ux4 ux5 ux5
uz4 qu qu
u><6 uxG
uzB uzB
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We assume the displacements of intermediate nodes, 5 and 6, are calculated from those of end nodes as

follows,

u22,4

1 1
Uys :E(uxl +ux2)’ Uss :E(uzl +u22)

1 1
Uss ZE(uxs +ux4)’ Uy :E(Uzs +uz4)

In a matrix form

uxl uxl
uzl uzl

U /2 0 1/2 0 0 0 0 0 1luy, U,

u 0 1/2 0 1/2 O 0 0 0 [{u u

z5 — 72 :[hCh]< z2 (2-4-28)

U 0 0 0 0 1/2 0 12 0 |Jug, U

U)oy LO O 0O 0 0 1/2 0 1/2]fu, U,
ux4 ux4
Uzs Local Uz Local

Therefore,

uxl

uzl

ux2 uxl uxl

UZZ uzl uzl

ux3 ux2 ux2

u | u u

73 _ {_[__]_E| z2 — [Tch]< 22 (2-4-29)

ux4 [hCh] ux3 ux3

u24 u23 qu

ux5 ux4 ux4

Ups Uzs Local Uzs Local

ux6

uzG
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Therefore,

uxl uxl
uzl uzl
uxl uxz uxl ux5 u><2 uxl
uzl uzZ uzl uzs uzz uzl
ux5 ux3 uxZ ux2 ux3 ux2
_ qu _ qu _ uzZ _ u22 _ uz3 _ uzZ
ful, = . —[DL]<UX4 =[D I, Ch}uxs C fuk= 0 —[DR]<UX4 =[D, [T Ch]<uxs
uzB uz4 qu u26 uz4 uz3
ux6 uxS ux4 ux4 uxS ux4
uze qu uz4 Local uz4 qu uz4 Local
u><6 uxe
u26 uze
(2-4-30)
Finally the force-displacement relationship of Cheveron brace is,
[k]L = [Cb ]T [nb]T lk JL [nb ][Cb] (2-4-31)
fxl uxl
le uzl
f><2 uxZ
f u
o =([TChF[DL]T[k]L[DL][TCh]+[TCh]T[DRF[k]R[DR][TCh]}u“ (2-4-32)
x3 x3
fzS qu
fx4 ux4
fZ4 Local Uzs
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2.5 External Spring

1) Axial spring

5 A B A
Gy — (‘}FT n

a . A

Figure 2-5-1 Element model for external spring

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-1 is

expressed as follows:

N =lkellon ) i=xy,2 (2-5-1)
5|x =Ug — Uy
0'y=Ug—Ug, (2-5-2)
5|z = 525 _5ZA
Therefore
uxA uxA
uXB uXB
u A u A
o.3=[F1 10 0 0 of “t=[n.k" (2-5-3)
Uyg Uyg
5ZA 5ZA
528 é‘zB
uxA u>(A
uxB uxB
' 1=[0 0 -1 1 0 of"ml=fn ] (2-5-4)
y) = TLYE
Uyg Uyg
5ZA 5ZA
5ZB 528
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uxA uxA
uxB uxB
u A u A
{o.}=[o 0 0 0 -1 1f t=[n k¥ (2-5-5)
uyB uyB
5ZA 52A
528 528

From global node displacement to element node displacement

u XA

u xB u1

Y (2-5-6)
u VB

§ZA u n

528

The component of the transformation matrix, [T,.c], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement
Transformation from the global node displacement to the element face displacement is,

ul ul
G =lelme K2 b= 32 i=xy, 2 (257
u, u,

Constitutive equation
The constitutive equation of the external spring is;

P, u,
F?Z “ KN (2-5-8)
3 i,

where,

[Ke]=[Te] [ke JTe] (2-5-9)
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2) Rotational spring

M
[ ) :
ﬁ\ @, X

¢ HON .

Figure 2-5-2 Element model for external spring

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-2 is
expressed as follows:

it o et @510

=0,—-0
% =0 = O (2-5-11)
¢x = exB - exA
Therefore
HyA QyA
-1 1 0 0
il _ # L4 0 (25-12)
¢x -11 exA exA
xB exB
From global node displacement to element node displacement
HyA ul
0 u
B ( _ [TrE ] 2 (2-5-13)
O :
0XB un
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From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

ul ul
{zX}:[an][T,E] Al @514
un un

Constitutive equation

The constitutive equation of the external spring is;

P, u,
F:Z =[Ke u:2 (2-5-15)
3 .,

where,

[Ke]=[Te ke I ] (2-5-16)
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3) Pendulum element

Figure 2-5-3 Element model for pendulum element

Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element in Figure 2-5-3 is
expressed as follows:

le kh 5'x 5Ix
Q= Ky 'y =k 45", (2-5-17)
NIZ kV 5‘2 5‘2

From node displacements, relative displacements are;

é“x =Ug — Uy

O0'y=Ug—Ug, (2-5-18)
5, =840,
Therefore
uxA uxA
51 -1 1 e e
u u
&= -1 1 r=lne ]y " (2-5-19)
) 1 1] e e
Z O O
O O
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

uXA

uXB ul

Ej’; =Ty | Uzz (2-5-20)
R u,

e

The component of the transformation matrix, [I'pE] , is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

§I ul ul
&yt = |[Tee | uf =[] uf (2-5-21)
é“z

un un

Constitutive equation

The constitutive equation of the Base isolation is;

R Uy
P:2 =[Ke] u;2 (2-5-22)
3 o

where,

[Ke]=[Te] [ke][Te] (2:5-23)
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4) \ertical damper

(x1,¥1.21)

X; —Xxo =rsinésing
Y1 — Yo =1Sin6cos ¢

Zy — Zy =1 COS 6

The unit vector along the damper axis (direction vector) is
éq =7 ((r = x0), 01 = ¥0). (21 — 7)) = (L, )
where

l=%(x1 —Xp), m :%(}’1 —Yo), n :%(21 — 7p)
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Force-displacement relationship for the element
The relationship between the displacement vector and force vector of the elastic element is expressed as
F, =ku,

where

Fa| |1 . Uda -
IS PR b s

The node displacements at A and B along the axis are expressed using the displacement

components in the x, y, z directions as,

Uga =I 0 m 0 n Offuy, (2-5.28)
Ugg 01 0 m 0 njjug

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

uxA

uxB u1

o [Tee ] u-2 (2-5-29)
Ug :

5ZA un

é‘ZB

The component of the transformation matrix, [T,.], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

ul ul
Il 0Om O n O u u
=[- T LT 02 2-5-30
TR PN S RO es
un un
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Constitutive equation

The constitutive equation of the Base isolation is;

R U

P

:2 — [KE] 2

Pn un
where,
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2.6 Base Isolation

5:#
o |
H.g
LU
X
A H.g
Y
'“_L.-I'
o,
Figure 2-6-1 Element model for base isolation

Force-displacement relationship for the element

The relationship between the displacement vector and force vector of the element is expressed as follows:

Q. 1 {5
{QQ}_%W%}}} (2-6-1)

Including the axial stiffness,

QIX [kpBI ] O 5'X 5‘)(
Avr=l o EA 13", t =[ka Ko, (2-6-2)
o' I’ o' o'

z z
From node displacements, relative displacements are;

5x=uxB —Usa

O0'y=Ug—Ug, (2-6-3)
5|z = 528 - 5ZA
Therefore
uxA uxA
u
5|X _ 1 1 xB xB
' uyA uyA
&= -11 = [nBI ]< (2-6-4)
5 _1 1| e
. O
628 528
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

Uya
Usg u;
Ei;\ = [TiBI u-2
O u,
O

(2-6-5)

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

5 U U,
u u
§'y = [nBI ][TiBI -2 = [TBI -2
5'2
un un

Constitutive equation

The constitutive equation of the Base isolation is;

Pl U
Pz u,
= [K BI
Pn un
where,

[K BI ]: [TBI ]T [kBI ][TBI ]

(2-6-6)

(2-6-7)

(2-6-8)
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2.7 Masonry Wall

Element model for Masonry wall is defined as a line element with a nonlinear shear spring and a vertical

spring in the middle of the wall panel as shown in Figure 2-6-1.

Figure 2-7-1 Element model for masonry wall

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

Q' =Ko7'sc (2-7-1)
For axial spring,
N',=ke,,, N,=ke', (2-7-2)
In a matrix form,
Qul| ke 0 0 |[r Vv
N,t=l0 k, 0Re, r=[kyke', (2-7-3)
N', 0 0 Kk,|l&, &',

Including node movement
The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,

T= 9, + ou, (2-7-4)
ox oz
where,
852 ~ E 5ZA2 — 5ZA1 + 5182 — 5281 (2-7-5)
ox 2 W w
aUz ~ i Uygr —Uym + Uygz —Uyao (2-7-6)
oz 2 I |
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The shear deformation, y',., is then,

I 1

Vie=1l= _W(5zA2 — O+ 02 — 5ZB1)+E(uxBl —U +Ug, — uxAZ) (2-7-7)
The axial deformation, &', €',,,is,
glzl = 5281 - 5ZA1’ glzz = 5282 - §zA2 (2-7-8)
In a matrix form,
u><A1 uxAl
52A1 §ZA1
I I I I Usaz Usaz
7' -05 -05— -05 05— 05 -05— 05 05—~ x
b w w w w ZA2 5ZA2
g, b= 0 -1 0 0 0 1 0 0 D,k
' uxBl uxBl
&', 0 0 0 -1 0 0 0 1
zB1 5181
uxBZ uxBZ
5282 5282
(2-7-9)
From global node displacement to element node displacement
Transformation from the global node displacement to the element node displacement is;
uxAl
52Al
uXAZ ul
o u,
A2 [TixN : (2-7-10)
uxBl
5281 un
uxBZ
5ZB2

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

7I ul ul
XC U u
en =Dy R Zt=[Ta ]’ (2-7-11)
glzz
u, u,

In case of Y-direction wall
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X

Local coordinate of Y-wall Global coordinate

Figure 2-7-2 Relation between local coordinate and global coordinate

In case of Y-direction wall, the wall panel direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0fX
y =|-1 0 0QY (2-7-12)
¥ —Beam 0 0 1j{Z Global
Therefore
Uy 1 Uy Uy
§ZA1 1 é‘zAl §ZA1
Usaz 1 u yA2 u yA2
5ZA2 — 1 é‘ZAZ — 5ZA2 (2_7_13)
Usg: 1 u yB1 u yB1
5281 1 5281 5251
Ugo 1 u yB2 u yB2
5282 y-wall L 1_ 5282 Global 5282 Global

Transformation from the global node displacement to the element node displacement is;

— [T (2-7-14)

o7

B2

Transformation from the global node displacement to the element face displacement is,
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7| ul ul
Xc u u

8'21 = [DN ][Tin :2 = [TyN :2
glzz . .
u u

n n

Constitutive equation
Finally, the constitutive equation of the wall is;

Pl ul
P u
’ = [K xN -2
Pn un
where,
[K XN ]: [TXN ]T [kN ][TXN ]
For Y-wall,
Pl ul
P u
;2 = [K N :2
Pn un
where,

[K yN ]= [TyN ]T [kN ][TyN ]
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2.8 Passive Damper

Element model for passive damper with a shear spring is defined as a line element with a nonlinear shear

spring as shown in Figure 2-8-1.

B1 W\ML

Al —— A2 S
A

W

Figure 2-8-1 Element model for passive damper

Force-displacement relationship

The relationship between the shear deformation and shear force of the nonlinear shear spring is,

lec = ksxylxc

Including node movement
The shear angle of the frame with four nodes, A1, A2, B1, B2, is defined as,

a8, ou,
T= +
OX oz
where,
a5z ~ l 5ZA2 — 5ZA1 + 5282 — 5281
ox 2 w w
aUz zi Uyer — U +uxBZ_uxA2
oz 2 | |
The shear deformation, y',., is then,
: | 1
Ve = rl= m(é‘zAZ _5zA1 + §z52 _5ZBI)+§(UXBI — Uy T Usg, _uxAz)

The axial deformation, &', €',,,is,

=0/~ 0p €;3=0p;— Opy

In a matrix form,
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(2-8-3)

(2-8-4)
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uxAl uxAl
52A1 6ZA1
I I I I uxAZ uxAZ
a -05 -05— -05 05— 05 -05— 05 05—
] w w w w 5ZA2 5ZA2
gyt=] 0 -1 0 0 0 1 0 0 =[D, k
' u><Bl uxBl
£, 0 0 0 -1 0 0 0 1
5181 5281
l"|><B2 uxBZ
5282 5282
(2-8-7)

From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is;

uxAl

é‘zAl

uXAZ ul

i’: =[Tio] uf (2-8-8)
5281 un

uxBZ

5282

The component of the transformation matrix, [T,], is discussed in Chapter 4 (Freedom Vector).

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

. U Uy
Y xe
u u
&y = [DD ][TixD ;2 = [TxD] ; (2-8-9)
glzz '
un un
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In case of Y-direction damper

Z Z
Y‘% jLEQ—AX
X Y

Local coordinate of Y-wall Global coordinate

Figure 2-8-2 Relation between local coordinate and global coordinate

In case of Y-direction damper, the damper direction coincides to the Y-axis in the global coordinate,

transformation of the sign of the vector components of the element coordinate is,

X 0 1 0}[X
y =-1 0 Y (2-8-10)
Y —Beam O 0 1 Z Global
Therefore
Usar 1 Uym Uya
O .m 1 O O
Uaz 1 Uyao Uyao
o 1 o o
zZA2 — zZA2 — zZA2 (2-8-11)
u xB1 1 u yB1 u yB1
é‘zBl 1 é‘zBl é‘zBl
u xB2 1 u yB2 u yB2
5282 Y -Wall L 1_ 5282 Global 5282 Global
Transformation from the global node displacement to the element node displacement is;
LIyA1
52A1
l'IyAZ ul
o u
2 | _ [TWD 2 (2-8-12)
u yB1
5281 un
u yB2
5282
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Transformation from the global node displacement to the element face displacement is,

' Uy U,
7/XC
SEICN i Y
Ear=Polloly . (=Ll h -
glzZ
un un

Constitutive equation
Finally, the constitutive equation of the damper is;

R U
P u
:2 = [KXD :2
Pn un
where,
[KXD] = [TXD]T [kD ][TXD ]
For Y-damper,
R U
P u
:2 _ [KyD :2
Pn un
where,

Ko )= Mo ] ko IT,o
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Appendix : Calculation of shear component

For “Masonry Wall” and “Passive Damper”, the shear deformation is defined as follows:

1) Shear deformation in one direction

¥ ¥
& F 3
Al
dﬁ
&
.

Shearstrainist=Al/1 =0

2) Shear deformation in two directions

¥
F

Al
: _I_ F'.:x

Shearstrainis ~ T=01+ 02 =Alx /I +Aly [/ Ix

ou, ou,
+—— > Eq.(2-7-4) and Eq. (2-8-2)

oy  OX

If we discuss small element 7 =
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This definition is necessary to remove rotational component. To explain this, suppose there is only rotational

(or bending) deformation,

v
v

From the above definition, shear angle will be
1= 0+(-0)=0

For example, in the upper story of the building under horizontal deformation, the bending
component is dominant and the shear component is small. Therefore, the brace damper doesn’t

work in the upper story.

L




3) In case of damper element

We define the shear angle in one direction as follows:

01

v

We adopt the average angle,

0= 1/2(01+02)

In the same way, the shear angle in another direction is

v

0= 1/2(01+072)
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2.9 Floor Element

In the default setting, STERA 3D adopts “rigid floor”. However, elastic deformation of a floor diaphragm in-
plane can be considered by the option menu selecting “flexible floor”. The stiffness matrix of the floor

element is constructed using a two dimensional isoparametric element.

5
4 Node 1

Xg X, u

Figure 2-9-1 4-nodes isoparametric element

The stiffness matrix with 4-nodes isoparametric is expressed as,

I:)1
Q
PZ
Q|

b [ = [Ke |
Q,
P4
Q,

F =K u (2-9-1)

N [N H< r—‘c

w

< C < C©C < C
N~ w

IS

The coordinate transfer function {x, y} is expressed using the interpolation functions as follows:

x(r,s) = ZA:hi (r,s)x, = %(1+ rNA+s)x, +%(1— r@+s)x, +%(1— r(L-s)x, +%(1+ rNA-s)x,

Y(18) = L RS, =3 @+ DA+ 8y, + 7 A= DE+S)Y, +3A-DE-9)Y, + L+ -9y,

(2-9-2)
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The deformation function {u, v} is also expressed using the same interpolation functions.
2 1 1 1 1

u(r,s) = Z h, (r, s)u; =Z(1+ r@+s)u, +Z(1_ r@+su, +Z(1— rL-s)u, +Z(1+ r@-su,
i=1

v(r,s) = ihi (r,s)v, :%(1+ N+ s)v, +%(1— r@+s)v, +%(1— rL--s)v, +%(1+ ra--syv,

i=1
(2-9-3)
Stiffness matrix can be obtained from the “Principle of Virtual Work Method,” which is expressed in the

following form:

j godv=0U"F (2-9-4)

where, & is avirtual strain vector, o is a stress vector, U is a virtual displacement vector and F is a load

vector, respectively.

In case of the plane problem, the strain & vector is defined as,

8_u
£, gc
gy |= — (2-9-5)
oy
Vxy ou  ov
_+_
oy OX
Substituting equation (2-9-3) into equation (2-9-5), the strain vector is calculated from the nodal displacement
vector as,
2, oh,
ou >y,
| % || %A
gy = —_— = Z—IVI
oy i Oy
Pw) jou ov| | &oh o &oh
oy Ox T oy | Fox

ul

oh oh oh oh Vi
—1 0 =2 0 == 0 =% 0 |u
OX OX OX OX 2
= 0 a_hl 0 % 0 % 0 % Va
oy oy oy oy | Us

oh, oh, on, oh, oh, oh, oh, on, |

oy X oy X oy ox oy x )y,

= B u (2-9-6)
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In the plane stress problem, the stress-strain relationship is expressed as,

o, 1 v 0 |eg

o, |= E v 1 0 &, (2-9-7)
1-v 1-v

Ty 0 O T Vxy

o= C &

Substituting equation (2-9-6) into equation (2-9-7),
o=CBu (2-9-8)
From the Principle of Virtual Work Method,

| (Bu) (CBu)dv = UT( | BTCdedy]u =U'F (2-9-9)
% V(xY)

Therefore, the stiffness equation is obtained as,

F=Ku, K=[B"CBdv (2-9-10)
v
If we assume the constant thickness of the plate (= t), using the relation dv = tdxdy,
K=t j B" CBdxdy (2-9-11)
V(xy)

Since this integration is defined in x-y coordinate, we must transfer the coordinate into r-s coordinate to use

the numerical integration method. Introducing the Jacobian matrix,

x oy
_|or or|. i i 9-
J= ox oy ; Jacobian Matrix (2-9-12)
0s 0s

the above integration is expressed in r-s coordinate as,

g r a(x,y) N
K _tjlvle(x(r,s), y(r,s))" CB(x(r,s), y(r,s)) 3(rs) drds (2-9-13)
where
oX oy
o(xy) _ _lor or R
a(r,s) = det ox oy (2-9-14)
0s 0s
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Evaluation of Jacobian Matrix

4 4
o ) (g, i,
Jj=|or or|_|i= or iz or (2-9-15)
o oy |7y, oh
os s ~ s S os !
Evaluation of the matrix B
OX OX OX OX
B=| 0 a_hl 0 % 0 % 0 % (2-9-16)
oy oy oy oy
c’?_h1 a_hl oh, oh, oh, oh, oh, oh,
oy ox oy ox oy ox oy oX
The derivatives ﬂ %a—hl@ are calculated as,
OX ox oy
ohy _ohor ohos - oh,_ohyor oh os
OX  or ox s OX "OX  or ox  8s ox
oh, oh or oh os oh, oh, or oh, s
— =t —— , = —+ —
oy oroy os oy oy or oy 0s oy
In a matrix form,
G_hl oh, oh, oh, g @ 6_h1 oh, oh, oh,
OX OX OX OX |_|OX OX| or or or or
a_hl oh, oh, oh, ﬂ @ ﬁ_hl oh, oh, oh,
oy oy oy oy oy oyNés os 05 0s
_jq-ifor or or or 2-9-17
Plan an, o on, N
s 0s 0s 0S
Evaluation of partial derivatives of the interpolation functions
oh, 1 oh 1
—L="(1+s L ="(+r
or 4( ) o) 4( )
%:_l(i_i_s) %:l(l_r)
or 4 os 4 (2-9-18)
oh, 1 ' oh 1
—=——(1-s B e e
or 4( ) oS 4( )
oh, 1 oh 1
—4==(-s —=—Z(l+s
or 4( ) oS 4( )
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The 3 points Gauss Integration Formula is defined as:

1
[ f (t)dt = 0.5556 f(-0.7746) +0.8889 f (0) +0.5556 f (0.7746)
-1

=a, f(t) +a,f(t,)+a;f(t;)

where, o, =0.5556, «a, =0.8889, «a, =0.5556
=-0.7746, t,=0, t,=0.7746

f(0.7746)

f(t)

f(-0.7746)

-1-0.7746 0 +0.7746 +1

The stiffness matrix is then calculated numerically as follows:

A
I

B(x(r,s), y(r,s))" CB(x(r,s), y(r,s)) aa((); Z)) drds

t

L — L e—

F(r,s)drds

tiia,aJF(r,, J

i=1l j=1

Le—r Le—

where

) a(x,y)
F(r9) = BT 9)y(r:s)) CBX(r ) y(r )

o, =0.5556, «a,=0.8889, «a,=0.5556
r=s =-0.7746, r,=s,=0, r;=s,=0.7746

77

(2-9-19)

(2-9-20)



From global node displacement to element node displacement
Transformation from global node displacements to element node displacements is,

(2-9-

21)
The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).
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2.10 Connection Panel

1) General case
In the default setting, STERA3D assumes the rigid connection zone between column and beam. You can
consider shear deformation of the connection area (we call “connection panel”) by the “Connection member”

menu.

Figure 2-10-1 Connection area

Shear deformation of the connection panel, v, is defined as shown in Figure 2-10-2.

<— uc=-0.5yah
4 \
: d\ H
fosni ¢
Al B 0g= 0.5vyA
h | vg=-0.5yaw
——
W W
|

Figure 2-10-2 Definition of shear deformation

Differences of displacement at node B and C are;

Aug 0 Au, —-0.5y,h
Node B: AV, r=4—0.5y,Wp, NodeC: AV, r = 0 (2-10-1)
AG, 0.5y, A6, -0.5y,
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First we consider nodal movement without shear deformation of the connection panel. As shown in Figure

2-10-3, the displacement at node B and node C will be;

Ug Uy Ug u, —6,h
Node B: <Vg r =V, +O0,W;, Node C: V. ¢ = R (2-10-2)
Oy O, Oc O,

Then, we consider shear deformation of the connection as shown in Figure 2-10-4. By adding Equation (2-

10-1) to (2-10-2), the displacement at node B and node C will be;

Figure 2-10-2 Nodal movement without shear deformation of the panel

Figure 2-10-4 Nodal movement with shear deformation of the panel
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u
Ug U, 0 u, 100 O VA
Vg p R4V, +0,Wp+4—-05y,Wt=1v, +0,Ww-05y,wr=0 1 w —05w ¢9A
04 0, 0.5y, 0, +0.5y, 001 05 ("
7 a
(2-10-3)
Node C:
u
Ug u,-60,h] (-05y,h] (u,-6,h—-05y,h) [1 0 h -0.5h VA
Vep={ VvV, (41 0 = v, =01 0 0 eA
0, 6, ~0.5y, 6,-05y, 001 -05|*
Y
(2-10-4)

2) Beam element

In case of rigid connection, as described in Equation (2-1-7), the nodal displacement is expressed as,

N S A RIRETN

0p| |0s-7 |
1 1 1 1 Uan
6’yA+—|uzA+ﬂLA6?yA——|uZB +/18¢9y8 - —= 1+, Ag u
_ I | _|1 | ® (2-10-5)
B 1 1 11 1 0
eyB +_.uzA+iA0yA__.uzB +139ys T /1A 1+ﬂ“B yA
| | | | 0,5
'”:H Z
COmmmm B

ﬁgf

Figure 2-10-5 Beam displacement with rigid connection

81



If we consider shear deformation of connection panel, from Figure 2-10-6,

0 _ {HVA +0.5y, -7
0 O +0.57 5 —7

} T: (U =216, =057, )~ (Up + 2,1'(6,0 —0.57.,,))

1 1
Opp +-Usp T An00 —FuZB + 4505 + 0.5y, —0.54,7,, —0.54;7 5

1 1
O + U + 2,0, —FuZB + 4505 +0.57 5 —0.54,7,0, —0.5457 5

| —
|_\

T 1+2,

|
===

ﬂ’B

05-054,

Loa 1ea, —05g,

~054,

0.5-0.51,

24 v, t j’.l‘rl["ql.J = ﬂj}r.‘-v' ]

|\

Q)

(2-10-6)

Figure 2-10-6 Beam displacement with shear deformation of connection panel
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The transformation matrices for beam element are;

Including connection panel and node movement

uzA uzA
B 1 1 U B u B
g'yA I— _F 1+ 4, Ag 0.5-0.54, -0.54; gyA gyA
o' 1 1 o0 o
B - - A 1+ 4, -0.54, 0.5-0.54; yB :[AB]< yB
5xA I I 1 7yA 7/yA
5XB l yyB yyB
- - 5><A 5XA
5XB 5XB
(2-10-10)
From global node displacement to element node displacement
Uza
Uz
ayA ul
o u
BTk (2-10-11)
7yA :
]/yB un
é‘xA
5XB
From global node displacement to element face displacement
Transformation from the global node displacement to the element face displacement is,
u u
e.yA ul ul
' 2 2
0 yB [~ [nB ][AB ][TixB (T [TxB] : (2-10-12)
5 : :
u u

n n
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In case of Y-direction beam

X 0 1 0/[X
y =[-1 0 0ORY (2-10-13)
Y —Beam O 0 1 Z Global

uzA _1 ] uzA uzA
uzB l uzB uzB
eyA -1 QXA GXA
9 _l Hx ex

% _ " =[s,} *® (2-10-14)
7/yA -1 Y xa 7 xa
7yB -1 V8 7 x8
5XA 1 §yA 6YA
§XB Y —Beam L 1- 5}’8 Global §yB Global

Transformation from the global node displacement to the element node displacement is,

uzA
uzB
HXA ul
0, u

Plofre ) (2-10-15)
}/xA
7/>(B Un
5yA
5yB

Transformation from the global node displacement to the element face displacement is,
u u

elyA ul ul

' 2 2
0 VB[ — [nB ][AB ][SB ][Tin - (T [TyB . (2-10-16)
5 : :

u u

n
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3) Column element

In case of rigid connection, as described in Equation (2-2-16), the nodal displacement in X-Z plane is

expressed as,

{elyA}:{HyA—T} . (uxA—ZAI'GyA)—(uxB+/18I'49YB)

0' s Op —7 I'
1 1 11 U
HyA——quA+/1A6?yA+—'uxB+/136?yB -— = 1+ 4, Ag u
_ | | = 1" ® (2-10-17)
1 1 11 2]
l9yB __.uxA +ZA9yA +—'uxB +/180yB - = /1A 1+2’B YA
I | " O,
Agl'
I 7
X
A
A Y

Figure 2-9-7 Column displacement with rigid connection (X-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-10-8,

O] _[0n=0570-7] (U= A0, +057,0)~ (U0 + 241'(0,0 +0.5,0)
0 O —05y, -7 ' I'

1 1
O,n _FUXA + /1A0yA +FUXB +ZB<9yB —0.57/yA + 0.5/1A;/yA + O.SAByyB

y:

y!

1 1
05 _FUXA + A0, +FUXB + 4508 —0.57/yB +O.5&A;/yA +O.5&ByyB

uxA
1 1 uxB
-~ = 1+4, A, -05+054, 0.57, 0
" A
=l 1 1 p (2-10-18)
L N A 0.51, ~0.5+0.54, ||/
" r
7yA
7/yB
Al
!ﬂ
Al

Figure 2-9-8 Column displacement with shear deformation of connection panel (X-Z plane)
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In the same manner, assuming rigid connection, the nodal displacement of column in Y-Z plane is expressed

as,

{e'm} . {exA —z‘} ] (Uye =210, )~ (U0 + 2,10, )

0 O —7 I'
1 1 1 1 Uya
HxA"'_.uyA‘F;tAexA__.uyB+/159x5 T 1+/1A /13 u
_ | | ~| ! 8 (2-10-19)
1 1 1 1 0,
€XB+FuyA+/1AexA—FuyB+iBHXB T _F An 1+, X
exB
B
Agl'
A.’iflﬁlﬂi
.|!H
Z
‘J'!'Ilrrgl.i
+ X
A
T Y

Figure 2-9-9 Column displacement with rigid connection (Y-Z plane)
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If we consider shear deformation of connection panel, from Figure 2-10-10,

0 sa _ O —0.57,4 — 7 S (uyB _/IBII(HxB +0.57,5 ))_(uyA + j’AII(GxA +0-57xA))
ele exB _0'57/XB -7 ,

O +EuyA + 1,0, —%uyB + 50,5 —0.5y,, +0.54, 7., +0.54;7,5

0.5 +%uyA + 1,0, —%uyB + 50,5 —0.5y,5 +0.54,7,, +0.54; 7,5

| =

—% 144, Ay

|
| ==

Lo 144, 05,

~05+0.52,

0.54,

_05+052, ||%e

(2-10-20)

Al

g

!ﬂ

Al

Figure 2-9-10 Column displacement with shear deformation of connection panel (Y-Z plane)
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The transformation matrices for column element are;

Including connection panel and node movement

uxA
uxB
- _gyA
Ll a4 A A Oye
o o AR 2 2 2 y
I P T T SEC S ) .
Ol |71 1 M TR 2" 2 L Vye
o' 1 1 1 u
o TS B S 0
xB | _ vB
Sl 11 Ay L4 Ay Ao 1A On
s I' I' 2 2 2 P
B 1 xB
ezA 1 e
015 1 7)<B
L 1] San
618
ng
HZB
uxA
uxB
Oun
O
7yA
7yB
Uyp
u
=[A )"
[C}QXA
HXB
Vxa
7x8
é‘ZA
628
0., (2-10-21)
QZB
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From global node displacement to element node displacement

uXA
uxB

O,
05
7 ya
Ve

(2-10-22)

From global node displacement to element face displacement

Transformation from the global node displacement to the element face displacement is,

0'\n
H'yB U, U
ele
0
o', u
P

:[nc ][AC][TiC : :[Tc : (2-10-23)

z
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4) Force-displacement relationship for the connection

Figure 2-9-11 Shear deformation of connection area

The relationship between the displacement vector and force vector of the element is expressed as follows:

Mo, Key 0 |74
MPy 0 ku Vy

(2-10-24)
where, initial stiffness of connection area is,
kPX = ku =GV (2-10-25)
where, G is the shear modulus and V is the volume of the connection
1) Connection volume of RC members
L/
Ty *: T A
: : dmax
el il Vv
hmax >
bmax
hmax

The volume is calculated as,

V= (abmax)(admax)(ahmax) = a3Vmaxl Vinax = (bmax)(dmax)(hmax)
where,  bpaxr Qmax: Pmax are the maximum size of attached beams in X, y, z direction,
a is an adjustment factor
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2) Connection volume of S members

- Box column
7/
Diaphraégm #
_/ tmax
) bmax -

The volume is calculated as,

V = (abmax)(zatmax)(a’hmax) = a3Vmaxl Vmax = (bmax)(Ztmax)(hmax)
where,  bnax tmax are the size and the thickness of the box column,
Romax 1S the maximum height of attached beams

a is an adjustment factor

- Hcolumn

Stiffener

hmax T

tmax

| |

bmax

The volume is calculated as,
V = (abmax)(@tmax) (@hmax) = @ Vnax:  Vinax = (Bmax) (tmax) (hmax)
where,  bpax tmax are the size and the thickness of the web of the H-column,
Romax 18 the maximum height of attached beams

a is an adjustment factor
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From global node displacement to element node displacement

Transformation from the global node displacement to the element node displacement is,

{y X} =T, u? (2-10-26)
Yy :

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation
The constitutive equation of the external spring is;

P, u,
sz =K, 2 (2-10-27)
3 ,

where,

[Kel=[T T ko IT5 ] (2-10-28)

2.11 Ground Spring
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Foundation

Figure 2-11-1 Element model for ground spring

Force-displacement relationship for the element

Foundation

The relationship between the displacement vector and force vector of the ground springs attached at the center

of gravity of the foundation in Figure 2-11-1 is expressed as follows:

Sway and rocking in X-direction

{ PxG } KHx O {UXG} CHx O {UXG}
= + .
M 0 Ky llOc| | 0 Cqllbp

Sway and rocking in Y-direction

Pe|_[Ki 0 ]fuc] [Co O ][0
M xG O K Rx HXG 0 C Rx QXG

Therefore
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PxG KH>< 0 uxG CHx O xG
I:)yG — KHy uyG + CHy l']yG
M yG KRy ‘9yG CRy yG
M 0 K o 0 C o
xG Rx xG Rx xG (2_11_3)
uxG uxG
u G u G
=[ks] ey +[C6] éy
yG yG
HXG HXG
From global node displacement to element node displacement
uxG ul
u G u2
ey =T 14 . (2-11-4)
yG
exG un

The component of the transformation matrix, [T, ], is discussed in Chapter 4 (Freedom Vector).

Constitutive equation
The constitutive equation of the ground spring is;

R U U,

P:2 =[Ks] u;2 +[Ce] UZ (2-11-5)
: : :

where,

[Ke]=[Te] [ke][Te]. [Co]=[Te] [cs][Te] (2-11-6)
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3. Nonlinear Element Models

Notation

a, Area of rebar in the tension side of the section

A, Total area of rebar in the section

o, : Strength of rebar

Og : Compression strength of concrete

Oy : Strength of shear reinforcement

D Depth of the section

d ; Effective depth of the section.

b Width of the beam

| Distance between the centers of stress in the section (= (7 / 8)d )-

Z, Section modulus including the slab effect.

E, Young’s modulus of steel

E, Young’s modulus of concrete
The Young's modulus of concrete E_(MPa) is calculated from the value of concrete
strength o5 (MPa) by the following formula:
E, =3.35x10" x( p/24) x (0 /60)"
where p is the unit volume weight of concrete = 23 (kN/m?3)

n : Ratio of Young’s modulus (=E, / E,)

P ; Tensile reinforcement ratio

P, : Shear reinforcement ratio

I, ; Moment of inertia of section considering the slab effect

M., Crack moment

M, : Yield moment

M/(QD) : Shear span-to-depth ratio

0, ; Crack rotation of the beam end

Hy Yield rotation of the beam end

3 : Crack rotation of the nonlinear bending spring

¢y : Yield rotation of the nonlinear bending spring

K, ; Initial stiffness

ky Tangential stiffness at the yield point

ky2 Stiffness after the yield point in the nonlinear bending spring
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Stiffness after the ultimate point in the nonlinear shear spring
Stiffness degradation factor at the yield point

Crack shear force

Yield shear force

Ultimate shear force

Distance between the corner springs in the Multi-spring model
Crack shear deformation

Yield shear deformation

Ultimate shear deformation

97



3.1.1 Beam
3.1.1 RC Beam

a) Section properties

. S . as
' ! dt
[ ] oo e e e ldl (50 oligraee o0 0
. o,
al = [T
D
o T o ‘:
T o — =22 [ a2
R
B : Width of beam,
D : Height of beam,
S : Effective width of slab,
t : Thickness of slab
di : Distance to the center of top main rebars,
d2 : Distance to the center of bottom main rebars,
al : Area of top main rebars,
a2 : Area of bottom main rebars
as : Area of rebars in slab
Figure 3-1-1 RC Beam Section
Area of section to calculate axial deformation
Ay =BD+(S-B)+(ng —1)a, +a, +ag) (3-1-1)
where,
ne =E/E, . Ratio of Young’s modulus between steel (Es) and concrete (Ec)
Area of section to calculate shear deformation
A; =BD (3-1-2)
Moment of inertia around the center of the section
BD® (S-B)t? D)’ t
I, = + +BD|g——| +(S-Bjt{D—-—- +
¢ 12 12 973 ( X 2 9
t 2
2 2
(ne -1)a,(D-d,—g) +(n. -1)a,(g—-d,) +(n. —1)ay (D_E_ gj (3-1-3)
where, g is the center of beam section calculated by
BD? /2+(S - B)t(D—t/2)+(nE —1){a2d2 +a1(D—d1)+aS (D—t/2)} (3-1-4)

Ay
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b) Nonlinear bending spring

nonlinear shear springs
Figure 3-1-2 Element model for beam
Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the anti-

symmetry loading in Figure 3-1-3. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

M
Moment distribution
M , M M

M Lo M, —°
| GEI '1

_____ 7RI = +
M" ! M:' H
a j“u am"‘-ﬂ \k" ==
. &, 7] g 9 ¢

Elastic element Nonlinear bending spring

Figure 3-1-3 Moment — rotation relationship at bending spring
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Crack moment force

For reinforced concrete elements, the crack moment, M _ is calculated as,

c

M, =0.56yoc,Z,, Z,=1,/90 when tension in top main rebars (3-1-5)
M, =056,0,Z,,, Z,=1, /(D —g)  when tension in bottom main rebars (3-1-6)
where,

Og Compression strength of concrete (N/mm?)

VANRARE Section modulus

Yield moment force

The yield moment, M y Is calculated as,

M, =090, (D-d,)+ 0.9a50, (D-1/2) when tension in top main rebars (3-1-7)
M,,=0.9a,0, (D-d,) when tension in bottom main rebars  (3-1-8)
where,

o, Strength of rebar (N/mm?)

Yield rotation

The tangential stiffness at the yield point, ky , s obtained from the following equation,:

where,

a

K=ak, kK

y

y

_BEI,
o

, (3-1-9)

is the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.63np, +0.043a/D)d/D)*, (a/D<2) (3-1-10)
a, =(-0.0836+0.159a/D)d /D), (a/D>2) (3-1-11)
where,
o2 : Tensile reinforcement ratio
p, =(a, +as )/(BD) (when tension in top main rebars)
P, = (as)/(BD) (when tension in bottom main rebars)
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a/D

~ Shear span-to-depth ratio (=1/(2D))

Effective depth
d=D-d, (when tension in top main rebars)
d=D-d,

(when tension in bottom main rebars)
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a, is modified in case of tension in top main rebars as

1 I 0
a,/=a, IL (3-1-12)

e

3
where |, = BD
12

the moment of inertia of square section without slab

The yield rotation of the nonlinear bending beam, ¢y , s then obtained from,

1 M
R il -
SES

y

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is

M
p=0-—= (3-1-14)
Ko

Crack rotation
From Figure 3-1-2, the crack rotation of the nonlinear bending beam, ¢C, is supposed to be zero value,

however, in STERA_3D program, it is assumed as,

¢.=0.001¢, (3-1-15)
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Effective width of slab

Figure 3-1-4 Effective slab area for flexural capacity of beam

In general, effective width of slab for the flexural behavior of a beam is assumed as,

S,=01L,~D (3-1-16)
where, L, : Length of beam
D : Height of beam

However, recent studies suggest the contribution of full length of slab to the flexural capacity, M yoof a
beam. Therefore, STERA3D adopts two types of effective widths:

1) For calculating section are and moment of inertia

S,=01L,~D
2) For calculating the yield moment, M y» in Equation (3-1-8),

S, =n,L, (3-1-17)

where, L, : Length of span

R ; Effective slab ratio (0.1~ 0.5), the default value is 0.1.
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Hysteresis model
To consider the difference of the flexural capacity between positive and negative side of the beam, a
degrading tri-linear slip model is developed based on the Takeda Model for the hysteresis model of the

bending springs of the beam.

M M
-l'w..‘. ............................................... }w klﬂ
M. k
@ ; ¢
' ¢J’H

; = P

k. =f_1r[aM—"' k = [ELJfL 'S =[ M, ]gﬁ_1| (3-1-18)
“ ®, ¢ ). b — 0, )P

Figure 3-1-5 Degrading Tri-linear Slip Model
(0=0.5, p=0.0 and n=0.001 as default values)

The strength degradation under cyclic loading is considered by elongating the target displacement, kr , to

be ¢'. asshown in the following Figure:
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o

L] ¢
k., ¢

n { &f.l T #5" "

W,
”émUQH (3-1-19)

¢m=[1+r

Figure 3-1-6 Introducing strength degradation (y=0.0 as default value)

Relationship between curvature and rotation

Figure 3-1-7 Rotation angle and curvature at beam ends

Let’s think about the relationship between curvature and rotation at the end of a beam.
In the above loading condition, the relationship between moment and rotation is
6El

M = |_ 9 (3-1-20)

On the other hand, the relationship between moment and curvature is
M
=— (3-1-21)
¢ El
Therefore,
6
¢= T 0 (3-1-22)

Assuming the neutral axis is in the middle of the section, the relationship between curvature and compression

strain at the section end is

o=

&e

D/2

(3-1-23)
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Therefore, the relationship between rotation and compressive strain is

L
€=— =
AT

Assuming D ~ I§ , then

If &, reaches0.003, @ isaround 0.01 (=1/100).

It corresponds to the yielding rotation of a beam.
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¢) Nonlinear shear spring
Hysteresis model of nonlinear shear spring is defined as the shear force — shear rotation relationship using an

origin-oriented poly-linear model.

My

M 5 Mo+ M
M, (7= B ) M, Q="4""8
|

! ! Ny=Mg =

nonlinear shear springs

Q k.. =0.001k,
).
0, "
o, | - s
o. |/ i}
L ki=Gdfl
i} s g

Figure 3-1-8 Force—deformation relationship of shear spring

Yield shear force

The yield shear force, Qy is calculated as,

0.053p,”* (o, +18) .
= +0.85,/p, o, (D 3-1-26

< { M /(QD) +0.12 Pu” Oy : ( )
where,

P : Tensile reinforcement ratio

Og : Compression strength of concrete

P, : Shear reinforcement ratio

Oy Strength of shear reinforcement

J ; Distance between the centers of stress in the section (= (7/8)d ).
Crack shear force

The crack shear force is, Q. , is assumed as,

_Q 1
Q= (3-1-27)
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Ultimate shear force

The ultimate shear force is, Q,, is assumed as,
Q, =Q, +ky(s,—s,) (3-1-28)

NOTE)
In STERA 3D, the stiffness after yielding is temporary assumed to be positive to avoid instability in

numerical analysis.

@‘_{- k y

0.001k,

0.

I — §r 4l

] e TR

[ "i'u

Figure 3-1-9 Stiffness after yielding

Crack shear deformation

The crack shear deformation is obtained as,

Q
s,=rl, y.==S 3-1-29
e =T Ve =5 ( )
Yield shear displacement
The yield shear deformation is assumed as,
— | — 1
Sy = 7y =50, (3-1-30)
Ultimate shear displacement
The ultimate shear deformation is assumed as,

1

= 3-1-31
100 ( )

s, =7l 74
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d) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic

element so that the total initial stiffness of the beam element does not change from the original one. This idea

is proposed by K-N Li (2004) for MS model.
iCanan 20
Elastic element Nonlinear bending spring

M M M

| M, M, I L
! HI:— = r=—=— + 1?5‘:_—]_ :
: a_1-k1| "‘l] au "Irh :
Increase Reduce
stiffness stiffness
M M

Figure 3-1-10 Modification of moment — rotation relationship
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The idea is realized using flexibility reduction factors, 7, (<1), 7, (<1), in the relationship between the

displacement vector and force vector of the elastic element in Equation (2-1-1) as,

. . ]
71 -
. 3EI 6El .
TyA || y I‘y M yA
1 — _ 0 Ml
Ty 6EI.  ?3E| 8
5Ix y y |‘ le
0 0o
I EA |
It must be —' > | or >0.5 and —II >
“gEr TRl O T T g

6El,

or y,>0.5.

(3-1-32)

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the

parameters, p,, p, to increase the initial flexibility.

ElrS

e

(3-1-33)

When p, >0, p, >0, it represents the infinite stiffness for rigid condition. Accordingly, the crack and

yield rotation will be modified as,
x M., . 1 |\/|y
g =P El’ ¢y —£ay 71] k.

In general, the relation between the rotation of bending spring and that of nonlinear bending spring is

b= 0y
= 71 k.

Making the modified flexibility matrix to be identical to the original one,

Il
3EI,

sym.

— I'
6E
II
3El,

ly

-original

n I’
—+
El 7V 3EI,

Py
El

sym.

This gives the flexivility reduction factors as:

3
= P1s

—1-
7/1 ||

72 =1-

3
sz

From the conditions y, >0.5 and y, >0.5,

. . I
K-N Li (2004) calls these parameters, p,, p,, as “plastic zones” and recommends to be p, = p, = 1—

Py <g: P, <g

Them the reduction factors will be y, = 7, =0.7.

II
6El,

+
"2 3E1,

110

mod ified

(3-1-34)

(3-1-35)

(3-1-36)

(3-1-37)

(3-1-38)
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e) Modification of stiffness degradation factor at the yield point
(The following modification of the stiffness degradation factor, «,, is suggested by Prof. Okano at Chiba
University.)

From Equations (3-1-32) and (3-1-34), the yield rotation of the member Hy under anti-symmetric loading

condition, M, =My =M, iscalculated as,

2y —=1M M M
eyszr i_j/ _ Y i+7_1 _y (3-1-39)
k. C K K

where ¥, =y, =7.

The yield rotation ¢9y in Equation (3-1-39) is different from the formula in Figure 3-1-10 since the factor
y is multiplied to only diagonal elements of flexural matrix in Equation (3-1-32).

The stiffness degradation factor is then obtained as,

ay

i,{iw_l} (@140

To realize the designated value of stiffness degradation factor, ¢, should be modified as,

a, = % [al +1- }/J (3-1-41)
y

For example, to realize the stiffness degradation factor a'y = 0.4, assuming y = 0.7, the modified a,is

a, = (1+1—0.7j =0.357
0.4

This modification is done automatically in STERA _3D.
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f) Modification of considering rigid zone ratio
A beam-column connection can be idealized as a rigid zone. In case of a beam element, the default length of
the rigid zone is set to be a half of the column width, and the nonlinear bending spring of the beam element

is arranged at the position of the column face.

On the other hand, if elastic deformation of the connection is considered by reducing the length of rigid zone,
the position of the nonlinear bending spring will be inside the connection area. In this case, when the

nonlinear bending spring is yielding, the moment value at the position of the column face is smaller than the

yield moment.

Column Column
i M |

A y 1 B
I
!

A B
|
g

Figure 3-1-11 Reduction of rigid zone and modification of yield moment

To make the moment at the column face to be the same as yield moment, the yield moment of the nonlinear

bending spring is increased as,

. 1/2+(@1-n)d
M,'= 1/2 M y =M,
y (3-1-42)
£=1+20-n)
For example, when | =540cm, d, =30cm, 7=0.75,
E=1+2x(0.25)x30/540 =1.027 (3-1-43)
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3.1.2 Steel Beam

a) Section properties

Z
—— A I
tr
H >y
o—0 tW
L B i
T b

B : Width, H: Height, tw, tr: Thickness

Figure 3-1-12 Steel Beam Section

Area of section to calculate axial deformation

Ay =2Bt, +(H -2t, )t, (3-1-44)
Area of section to calculate shear deformation ( )
A =(H-2t)t, (3-1-45)

Moment of inertia around the center of the section
BH®-(B-t,)(H -2t,)°

[ : along strong axis 3-1-46
y T g g ( )
2t B+ (H-2t,)t° _
, = : along weak axis (3-1-47)
12
Moment of inertia for torsion
I, = Iy +1, (3-1-48)
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b) Nonlinear bending spring

\_ nonlinear bending springs

Figure 3-1-13 Element model for beam

Hysteresis model of a nonlinear bending spring is defined as the moment-rotation relationship under the anti-
symmetry loading as shown in Figure 3-1-14. The initial stiffness of the nonlinear spring is supposed to be

infinite, however, in numerical calculation, a large enough value is used for the stiffness.

Moment distribution
M M M
J;ll";’I - M . /O
GET = +
ky=—- 5
b, 0 ’r 4" ¢
Elastic element Nonlinear bending spring

Figure 3-1-14 Moment — rotation relationship at bending spring
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Yield moment force

The yield moment, M is calculated as,

y

M, :{Btf (H —tf)+%tW(H —2tf)2}ay (3-1-49)

where,
Strength of steel (N/mm?)

Figure 3-1-15

Yield rotation
From Figure 3-1-14, the yield rotation of the nonlinear bending beam, ¢y, is supposed to be zero value,
however, in STERA_3D program, it is assumed as,
¢,=0.0010, (3-1-50)
where

6El
9y=My/ko, ko:l—

Hysteresis model

A bi-linear model is assumed for the hysteresis model.

M,

9, /

|

Figure 3-1-16 Hysteresis of steel
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¢) Modification of initial stiffness of nonlinear springs

In numerical calculation, a large dummy value is used for the initial stiffness of the nonlinear spring to
represent rigid condition. This large stiffness may cause an error for estimating the force from the
displacement. One possible way to solve the problem is to reduce the initial stiffness of the nonlinear spring
to be a certain value reasonable for calculation, and on the other hand, increase the stiffness of the elastic
element so that the total initial stiffness of the beam element does not change from the original one. This idea
is proposed by K-N Li (2004) for MS model, and can be used for nonlinear spring model also.

(Caaar )L

Elastic element Nonlinear bending spring

: M, M, ’
b8, = il = r=— + ¢, =0 :
i ku k” i
Increase Reduce
stiffness stiffness
M M

k,_, Iy ‘{‘:l =El P
T {5'1 @
o Y s Mo
: ﬁ|. :_I = - - + = 1— _I :
E k, Ky #,=0-7) k, |

Figure 3-1-17 Modification of moment — rotation relationship
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The idea is realized using flexibility reduction factors, (< 1), Vs (< 1), in the relationship between the
displacement vector and force vector of the elastic element in Equation (2-1-1) as,

- ; ;
7 -
' El El '
T'A 3|| y 6 I'y M a
' =| - 0 KM’ 3-1-51
f 6EI, '?3El, v (3-1-51)
5, 1|UN%
0 0 —
L EA |
It must be 7/—I> | or 7,>0.5 and ;/L> | or y,>05
"3El, ~ 6EI, P07 T TEBEL, COBEI, P

Also the initial flexibility matrix of the nonlinear spring can be expressed as follows, introducing the

parameters, p,, p, to increase the initial flexibility.

ol

pl/EI
0

p,/El

0

:| M ‘yA
Mg

}

(3-1-52)

When p, -0, p, — 0, itrepresents the infinite stiffness for rigid condition. Accordingly, the yield rotation

will be modified as,

'y M, (3-1-53)
y pl EI
In general, the relation between the rotation of bending spring and that of nonlinear bending spring is
M y
p=0—y, — (3-1-54)
kO
Making the modified flexibility matrix to be identical to the original one,
o %”135 _Gél
3El, 6EIl, y y
I' P, I'
= —= 4+ 0 3-1-55
3El, El 72 3El ( )
I' I'
sym. — sym. —
L EA_ original L EA_ mod ified
This gives the flexivility reduction factors as:
3 3

7/1:1_Fp1v V2 :1_Fp2 (3-1-56)

From the conditions y, >0.5 and y, >0.5,
<—, <— 3-1-57
P1 5 P2 5 ( )

|
K-N Li (2004) calls these parameters, p,, p,, as “plastic zones” and recommends to be p, = p, = 0

o
Then, the reduction factors will be y, =y, =0.7.
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3.1.3 SRC Beam

a) Section properties

di

. . as
| |
' t o o o dl ,r_c_>_ ___9____;_" ‘
al = |
D
a2
b8 |
B : Width of beam, o
D : Height of beam,
S . Effective width of slab,
t : Thickness of slab
dl : Distance to the center of top main rebars,
d2 : Distance to the center of bottom main rebars,
al : Area of top main rebars,
a2 : Area of bottom main rebars
as : Area of rebars in slab
bl : Width of steel
h1l : Height of steel
tw : Thickness of web
tf : Thickness of flange

Figure 3-1-18 SRC Beam Section

Area of section to calculate axial deformation

A, =BD+(S-B)+(n. —1)a, +a, +a, +a ) (3-1-58)
where,

ne =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (Ec)

ag =2(b, —t,)t, +ht, :Areaofsteel
Area of section to calculate shear deformation

A, =BD (3-1-59)

Moment of inertia around the center of the section

BD® (S-B)t? ( DT ( t JZ
I, = BD|g-—| +(S-B}/D-—-
TR TR +(S Bk 2 9T

(ne L, (d; - ) +(n ~a,(D—d, — g +(ne _1>aS(D_%_gf+

bh®—(b —t )(h -2t )°
(nE _1) 111 (1 1;)(1 f) (3-1-60)
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where, g is the center of beam section calculated by
g BD?/2+(S-B)t(D~-t/2)+(n. —1)a,d, +a,(D-d,)+as(D~t/2)+a,D/2)

AN
(3-1-61)
b) Nonlinear bending spring
Hysteresis model of a nonlinear bending spring is the same as RC beam.
Crack moment force
For reinforced concrete elements, the crack moment, M is calculated as,
M, =056y0,2,, Z,=1./90 when tension in top main rebars (3-1-62)

M., =0.56,0,Z.,, Z,=1,/(D—-g)  whentension in bottom main rebars  (3-1-63)

where,

Og : Compression strength of concrete (N/mm?)

2y, 2, - Section modulus

Yield moment force

The yield moment, M is calculated as,

M y = M yi2re + M v (3-1-64)
where
M ;5 rc : Yield moment of reinforced concrete (3-1-65)
M ige = O.9aiay(D —d,)+ O.9asay(D ~t/2) when tension in top main rebars
M ysre = 0.9a20y(D - dz) when tension in bottom main rebars
where,
o, ; Strength of rebar (N/mm?)
1 .
M,s = [bltf (h,—t;) +th(h1 -2, )Z}nys : Yield moment of steel (3-1-66)
where,
o Strength of steel (N/mm?)

y,S
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3.1.4 Direct Beam

a) Model description

The direct beam is defined as a rigid beam with nonlinear bending springs and a nonlinear shear spring

Figure 3-1-19

The displacement vector of the beam element is obtained as the sum of the two displacement vectors.

0‘ 1
lyA = ¢|yA + ny (3'1'67)
0 yB ¢ yB 77y
where @' ,, @' are the rotational deformations of nonlinear bending spring, and 7, is the rotational

deformation of the nonlinear shear spring.

b) Nonlinear bending spring
The force-deformation relationships of the bending springs are
MY, =f(0',), M'ys=1(60") (3-1-68)

Incremental form is

MM (kuddn] [k 0 T[A%] o - [Ad
{AM 'ys}_{kmBA¢'yB}_[ 0 kmB:|{A¢IyB}_[km]{A¢IyB} (3-1-69)

That is,
1
AV I S U AV N g LAV
kmB
where f_, :i, fos -1
mA kmB
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¢) Nonlinear shear spring

The force-deformation relationship of the shear spring is

Q,
M IyA sz
<_J
Figure 3-1-20
_ M 'yA+ M 'yB
7 I 1

Qz = g (SZ)

— SZ
ny - T

Incremental form is
AM'  +AM" AM'
AQ = e 1 2 S (3-1-71)
I’ " 1'||AM V8

AQ, =k As, (3-1-72)
An, = AISZ (3-1-73)

If we consider the rotation angles in both ends,

1
I 1

1 1
O T O N e T ) Y B Y E A P
Any 11177 |1k 1|k LI" 1I']|aM ", 1 1 ||aM',
I |

(3-1-74)
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d) Force-deformation relationship of the direct beam

Therefore, the incremental form of the deformation of the direct beam is
A0, | _ A, B {fmA 0 } AM",, {fs fs} AM",
AQ'yB A¢yB Any 0 me AM 'yB fS fS AM 'yB
B fmA+ fS fs AM 'yA —[f ] AM 'yA
- fs me + fs AM IyB b AM I)’B

[fz] is the flexural stiffness matrix of the beam element.

(3-1-75)

By taking the inverse matrix of [f;], the constitutive equation of the beam element is obtained as,

AM IyA B fmA 0 - A¢yA . A¢yA
AR AR v

AM ', B 1| A8, B AG",
A RCRARRla

where, [kg] is the stiffness matrix of the beam element.

If we introduce an elastic axial spring in the middle,

Figure 3-1-21
N IX = kné"x
. . 1
o', =fN', f:k— (3-1-77)
70", [t f AM", AM",
A’y = f fgt+ T, AM 'y = [ fB] AM' g (3-1-78)
AS', f. || AN, AN,

[f5] is the flexural stiffness matrix of the beam element. By taking the inverse matrix of [f,], the

constitutive equation of the beam element is obtained as,

AM", 1 AO',, A,
AM g e =[T] A0 5 1 =[k]140" g (3-1-79)
AN AS" AS"
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The nonlinear spring displacement vector is obtained from the element face displacement as,
AP, f. 0 O|[AM ‘A
Aggr=| 0 fe OKAM "8 (3-1-80)
As f f, O]| AN',

S S

We assume the deformation in the out-of-plane direction to be elastic as

¢'ZA n, ¢'ZB
M. C F/L/H Q M’
Figure 3-1-22

The displacement vector of the beam element is obtained as the sum of the two displacement vectors.

{9 IZA} — {¢IZA} + {nz} (3-1-81)
9‘ZB ¢'ZB 772

Incremental form is

AB', Ad,, An, fno 0 AM",, fo fol|[AM',
= + = +
AelzB A¢zB Anz O meO AM 'zB st st AM IzB

(3-1-82)
{fmﬁ foo foo HAM 'VA}:[f ]{AM 'yA}
fo, frgo + foo | [AM (g 2011 AM 8
[fgo] is the flexural stiffness matrix of the beam element.
Combining with the normal direction,
AG' [ Fon+ £ f 1(am", AM",,
AG' g f, fe+ f AM ' g AM"g
AO', ¢+ = fono+ feo feo AM', += [ fB] AM ',
AG', fo, fe0+ oo AM ' AM ',
JAY f. || AN, AN,
] _ (3-1-83)

e) Algorithm to calculate the force-deformation of the viscoelastic damper (Kelvin-Voigt model)

The shear spring can be a viscoelastic damper.

This figure shows the Woigt (or Kelvin-Voigt) model with an elastic spring with stiffness, K, and a dashpot
with damping coefficient, C. The spontaneous stiffness of the nonlinear connection spring is represented as
K, . This model is the same as the viscoelastic damper (Kelvin-Voigt model) with a nonlinear spring in
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Chapter 3.7 “Passive Damper” (4).

Ka c —
~ | Qi;, dj
Node i I Node j
Qx, dk Qc, d.
Figure 3-1-23
The force of the friction damper, Q, , is obtained as,
Q (1) =Q, (t—At)+ K,Ad,
or AQ, = K Ad, =K, (Ad; —Ad,) (3-1-84)
where, d, : relative displacement of the connection spring
d. : relative displacement of the dashpot and spring
dij : relative displacement between i-j nodes
The force of the dashpot and spring is,
QC -~
relief point
v G
Qs |-
C1 de
Figure 3-1-24 Bi-linear model
Q.=Kd, +C,d_ +Q, (3-1-85)

Q.(t—At)+AQ, = K {Ad, (1) +d, (t— Aty +C, 2% o
AQ, =K {Ad, (1) +d.(t-AD)}+C, A(kt(t) ~Q.(t-At)+Q,
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AQ, = (K N ‘A:_i] Ad, () + Kd, (t — At) —Q, (t— A + Q. (3-1-86)

When the time interval At is small enough, the velocity at time t can be expressed as,

Ad, (1)

d.(t)= - (3-1-87)

Ad,(t)=d_(t)—d, (t—At) (3-1-88)
From Equations (3-1-84)

AQ, =K Ad, =K, (Ad; —Ad,) (3-1-89)
From the condition AQ, = AQ, and Equation (3-1-86)

Kq(Ad; —Ad,) = ( K +%)Adc(t) +Kd, (t —At) -Q,(t — At) + Q,

Ad, (1) = Q. (t—At) + K, Adj (t) — Kd, (t — At) - Q, (3-1-90)

K+K, +&
At

Substituting into Equation (3-1-89)

Q. (t—At)+ K,Ad, (t) - Kd, (t—At) - Q,

AQ, =K, 1 Ad, — c
K+K,+-2%
At
AQ =K, | 14— |ad, —K, Qc(t_At)_ch(tC‘At)‘Qs = K, ®,Ad, — K, @,
K+K,+-% K+K,+-2
At At
q)1 — 1+ Kd C ’ q)z — QC (t_At)_ ch (tC_ At)_QS (3_1_91)
K+K, +—2 K+K, 4+ 2
At At

On the other hand, from Equation (3-1-71),

o= =t koo

[/ V'][kp}i{izz}_{i//:}MJ
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i) v vl e o

(3-1-92)
By setting AQ =AQ,, A =Ad;,
AQ =K ®,A5 - K, D, = [R]{iZA}—[R]{L/:}Aﬁ
1/ o126,
(chbl+[R]{l/l}jA5_[R]{MB}+chbz
Rl K.,
Ad = A |B (3-1-93)
Rl ke

From Equation (3-1-90)

Q. (t—At) + KyAdy (1) —Kd (t-A -Q, _ Q, (t—At)—Kd, (t—At) -Q, N K Ad; (t)

Ad, (1) =

K+Kd+& K+Kd+& K+Kd+&
At At At
=@, +(D,-1)A5
(3-1-94)
Ad, =Ao—-Ad, (3-1-95)
A AG I
P :{ A}_{l/ } AS o196
Adg] [AG) (Y

Before the relief point of the dashpot, Equation (3-1-91) will be obtained by changing C, - C,, Q, =0

as

K
@1: 1+—d , @2

KK+ K+ K+
At At

_ ] Q. (t—At)— Kd, (t - At)

(3-1-97)

When the velocity of the dashpot is over the negative relief point, Equation (3-1-91) will be obtained by

changing Q, = —Q, as

O =1+—¢ | @,= Q. (t—At)—Kd, (t—At) +Q,

(3-1-98)
K+K,+S2 K+K,+2
At At
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The algorithm to obtain the shear force Q is as follows:

1) Evaluate AS = Adij from Equation (3-1-93)

2) Evaluate Ad, from Equation (3-1-94)

3) Evaluate d (t)=d (t—At)+Ad.(t) and d;(t) =d;(t—At)+Ad;(t)

4) Evaluate shear force from the bilinear hysteresis model of the friction damper (including elastic element).
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In case there is no connection spring,

W~
C —
o I o Qij, dij
Node i Node j
Qc, d.
Figure 3-1-25
Q. =Kd, +Cd, +Q,
Ad_(t)
Q.(t—At)+AQ, = K{Ad, (t) +d (t—At)} +C, —==+Q, (3-1-99)
AQ, :[K +%)Adc(t)+ Kd, (t—At) - Q, (t — At) +Q,
AQ =[R]{A0A}—[R]{1/I}A5
A6, 11
(3-1-100)
=(K +%)Adc(t)+ Kd, (t—At)-Q, (t—At)+Q,
By setting Ao = Ad,
[R]{i?\}— Kd_(t—At) +Q, (t—At) - Q,
AS=Ad_ (t) = 8 (3-1-101)

| C
[R] Y +K+-2
I At
Before the relief point of the dashpot, Equation (3-1-101) will be obtained by changing C, - C,, Q, =0

as

[R]{iZA}— Kd, (t—At)+Q, (t— At)

B[R]{z:}+K+§i

When the velocity of the dashpot is over the negative relief point, Equation (3-1-102) will be obtained by

AS = Ad,(t) = (3-1-102)

changing Q, = —Q, as
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B

A6
[R]{MA}— Kd, (t—At)+Q,(t—At)+Q,

AS = Ad.(t) =
|
[R]{zl}+K+ii

The algorithm to obtain the force Q is as follows:
1) Evaluate AJ =Ad, from Equation (3-1-101)
2) Evaluate d_(t)=d_(t—At)+Ad_(t)

3) Evaluate force from Q, = Kd_+Cd_ +Q,
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f) Algorithm to calculate the force-deformation of the viscoelastic damper (4-element model)

The shear spring can be a viscoelastic damper.
This figure shows the 4-element model with two non-linear dashpot elements C,, C, and two non-linear
spring elements stiffness, K., K,. This model is the same as the viscoelastic damper (4-element model) with

a nonlinear spring in Chapter 3.7 “Passive Damper” (5).

UBYVE
@KILCI Q.
o— —O 41’ dij
l d d, !
@ n<“
A f

f1(t) = Kyd (t)

. Ad
f1(t) = Cyd, = C1A_tc = Kd(t)
_C, Ad,
di(t) = K_1 AL

Ad, = d (t) — d.(t — At)

From dl] = dk + dc

d(t) = Gade ()—K—lAd +Ad, + d(t — At)
dy(t) = (1 T >Ad +d,(t — Ab)
Ad, = ————{d;;(t) —d.(t — At)} = —C{Ad +d;;(t — At) — d.(t — At)} (3-1-104)
(Kl At) (Kl At)

d.(t) =d.(t — At) + Ad,
f2(t) = fo(t — At) + K;Ad;;

. Ad,
fi(t) = Cyd. = C1E

d (3-1-105)

fc(t) = CZdL] = CZA_tl]

Qij(t) = f() + f1 () + fo(t)
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AQ;i(t) = f(t) + f1(t) + fo(t) — Q;;(t — At)

Ad Ad;;
= [f2(t — At) + K,Ad;;] + [C1 A_tC] + [Cz A_t”] —Q;;(t — At)
3 C, ) Ad;;
= fo(t — At) + K,Ad;; + A—t—cl{Adij +d;j(t — At) — d (t — AD)} + C, T Qi;(t — At)
(K. +5})

¢, K C ¢ K
= |Ky + —————+ | Ady; + fo(t — At) + = —{d;j(t — At) — d (¢ — At} — Qy;(t — AY)

At(K +Q) At At(K +Q)

17 At 17 At

= _Kz +K, + %] Ad;; + fo(t — At) + Ko{d;;(t — At) — d (¢t — At)} — Q;(t — At)

where
i K
K,=———+—
At Cl
(K +5t)
Thus,

AQ;;(t) = 0,Ad;; — 0,
_ G

B, = Qij(t — At) — fo(t — At) — Kad;j(t — At) + K,d (t — At)

1
A6 N
805(©) = Ry - [R1{ | 85 = 0,85 — 0,
]
Solving for AS
[R1{pg"} + 02
§=————
A T (3-1-106)
[R1{1t+0,
T

The algorithm to obtain the force Q is as follows:
1) Evaluate A§ = Ad;; from Equation (3-1-106)
2) Evaluate Ad. from Equation (3-1-104)

3) Evaluate Q;; from Equation (3-1-105)
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Appendix 3.1.2:

A-1. Hysteresis of Degrading Trilinear Slip Model

In OPTION menu in Beam Editor, you can control the shape of hysteresis loop.

.
Beam Editor = |
| BEAM
Size (mm)
Tipe ™ S =T o
CE - B |3un d1 |4u
e
Ini D r A
22 |zl | o[eoo a2 [40 Beam Option Editor S5
B3 = T2
B4
s | 150 [
B5 B BEAM OPTION
Bf
B7 o
B2 FoE L LT LT 1 Amplification Factor for Steel Strength [0,2] | 11
B9 |2 I |D2EJ I
313 o ) (Nimm32) 2. Rs : Effective Slab Ratio [0,0.5] | 0.1
B12 BOTTOM |2 vl > IDED 'I sD |295
B13 . . .
- |u.5
14 3.R1: Stifness Degrading Ratio [0,1]
B15 —3hear Reinforcement Bar
B16 4. R2 - Slip Stiffness Ratio [0,1] I 0
B17 |2 ~|- |p13 ~|-@ [120 ~| sD [295
R1& -
5. R3: Strength Degrading Ratio [0,1] I 0
Copy | —Slab Reinforcement
Ut i 0.02
I_1 j B |D1U j -@ I'IEU j ap |295 6. Ru : Ultimate Rotation Angle [0,1]
—Concrete ( Nimm2)——— 7. Kp/Ky : Stifiness Ratio over Ry [0, 1] I 0.001
Fc |24
OFTION | 8. Ku/Ky * Stifiness Ratio over Ru [-1, 1/1000] | 0.001
o0 | ok |
.

R, : Effective Slab Ratio
As described in Eq. (3-1-8), when tension in slab side, the yield moment of beam , M yis is
M, =0.9a,0,(D-d,)+09a,0,(D-t/2)
where, a,is the area of rebars in effective width of slab, S, , which is defined as Eq.(3-1-17),
Sy =1L,

1 (R, inthe menu) is the effective slab ratio , the default value is 0.1.

Depending on the effective slab ratio R, the yiled moment M yand the yield rotaion Ry will change together

as shown in the Figure below, since the tangential stiffness at the yield point, K, is assumed to be the

same.
R, :Ultimate rotation angle to define the maximum moment before degradation. The default value is 1/50.

K o The stiffness after the yield rotation angle, Ry .

K, : The stiffness after the ultimate rotation angle, R, .

u
It can be the negative value to consider strength degradation, however, the default value of the ratio K, / Ky is
1/1000 without degradation.
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Effective slab ratio Rs
(n, inEqQ.(3-1-1

Stiffness over Ru
(cauld be negative)

o)
p o [N NI

y u

Ultimate rotation angle
(recommended over 1/50)

R, : stiffness degrading ratio in the trilinear hysteresis is 0.5. (0: no degradation)
R, : slip stiffness ratio in the trilinear hysteresis is 0.0 (0: no slip).

R, : strength degrading ratio in the trilinear hysteresis is 0.0.

Those parameters control the shape of hysteresis loop as descrived in Egs. (3-1-18) and (3-1-19). That is,

M
M.\, |
k = —L |2 =
f [Uvﬁm (@=Ry)
A ) =£ M, jqﬁ_y” .
g b PR
¢'m=(1+7/ ”Zy }ém (y=R,)

More detail rule in the hysteresis loop is described in the following sections:
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1. Elastic range

fy(1)

fe(1) |,

s0(1)

2. From crack point to yield point

1
s0(2)
fc(2)
Initial stiffness, s0, is calculated from
sO(1) = fc(1) / de(2)
fy(2)

sy

(drm(1), frm(1))
unloading point

(drm(2), frm(2))
unloading point

towards the maximum point of the other side
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3. Loading on the primary curve after yielding

(drm(2),frm(1))
fu |
fy ]
fdm
xdm xd0
i (du,fu)
i ssd fdm (drm,frm) T (du,fu)
: su
'/ s
4// 4 xdm
(drm(2),frm(2))

If the displacement is less than the degrading point (du, fu),
the unloading point will the target point (drm, frm)

a

dy

drm

f
The stiffness of unloading. ssd, will be calculated from SSd = 2

d

y
degradation depending on the ductility factor, (drm/dy). The default value of is & = 0.5

, Where ais the parameter to control the stiffness

(du,fu) (drm,frm)
fdm |----===_______>
If the displacement is over the degrading point,
intersection of the LINE1 (degrading line)
and LINE2 (unloading line) will be the target
point. LINE2 : LINEL

If the force is lower than 0.1fy, intersection of
the LINE1 (degrading line) and LINE2 (lower (drm,frm)
boundary) will be the target point.

ssd

LINEL

0.1fy
Lower boundary
LINE2 ,

7

xdm
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4. Crossing zero force line

(drm,frm)
4 —>

B

4

ssd

@m@),frm))  (@m(2).frm(2))

@m@.fm@) 5 £

Target point of the other side, drm(2), will be increased
according to the ductility factor, (drm(1)/dy(1)), as follows:

drm(1
drm(2)=|1+y W
dy(1)
where v is the parameter to control the strength degradation.
The default value is y=0.0 (no degradation).

drm(2)

ssl
_
(dslfsl)
//,
,/
/’érm

136




5. Calculation of slip point

drm (@), frm@) *,

After crossing zero force line, the stiffness will be
calculated as:
B
| dy |

_| frm(2)
_|drm(2) - xd0||drm|

where S is the parameter to control the slip ratio. For the
default value (8 =0.0), it will be no slip and towards the
maximum point.

.,

deo
6

(dsl, fsl) ssl
LINE2 8
srm
,/, The stiffness will change at the intersection of
,/’ LINEL1 and LINE2. After the intersection point,
) (dsl, fsl), Level 8 will be towards the maximum
(drm(2), frm(2)) */-* point.
ssd ssd
f 7 xdo
e 6
ssd ) ss|

(drm(2), frm(2))

Stiffness unloading from Level 6 (Level 7) and
stiffness unloading from Level 8 (Level 10) is the
same as the unloading stiffness, ssd ( Level 5).

a7

srm



dslp = s3%xd0/ (s3-s2) |

After crossing zero force line from Lavel 7, Level 9 will be towards the
maximum point. Stiffness unloading from Level 9 (Level 11) is the same as
the stiffness of ssd (Level 5).
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3.2 Column
3.2.1 RC Column

a) Section properties

1 v
. T
L5 ’
B : Width of column,
D : Height of column,
dl : Distance to the center of x-direction main rebars,
d2 : Distance to the center of y-direction main rebars,
al : Area of x-side main rebars,
a2 : Area of y-side main rebars,
ac : Area of corner main rebars

Figure 3-2-1 RC Column Section

Area of section to calculate axial deformation

Ay =BD +(ng —1)a, +a, +a,)
Area of section to calculate shear deformation

A, =BD/x, k=12
Moment of inertia around the center of the section

DB?® B 2
Iy = 12 +(nE —1)(ac +al{5_dlj

BD? D 2
| = 5 +(ng —1)(ac+a2)(?—d2j
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b) Nonlinear bending spring

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading in Figure 3-2-2. The initial stiffness of the nonlinear spring is supposed to be infinite,

however, in numerical calculation, a large enough value is used for the stiffness.

u Moment distribution

M
M ) M M
M y / M y
6EI  _

M, b ko = e - * M,

ko\k =,k omeo

0, 0, 0 v b 4, 4

Elastic element Nonlinear bending spring

Figure 3-2-2 Moment — rotation relationship at bending spring

The crack moment, M. is calculated as,

ND
MC =0.56 Op Ze +? (3-2-5)
where,
Opg : Compression strength of concrete (N/mm?)
Z, ; Section modulus
N ; Axial load
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The yield moment, M y Is calculated from the following formula under the axial load, N

if(O<N<N,)
N
M, =0.8a,0,D +0.5ND| 1- (3-2-6)
bDo,
If(N, <N<N,.)
N, —N
M, =(0.8a,5,D +0.12bD %0, | —mx—— (3-2-7)
Nmax - Nb
where, N, is the balance axial force,
N, = 0.4bDo, (3-2-8)
and N, isthe maximum axial force,
N, ®bDog + Ao, (3-2-9)

The tangential stiffness at the yield point, ky , is obtained from the following equation,

ky=a,K, K, =6|E (3-2-10)

where,

a, s the stiffness degradation factor at the yield point, which is obtained from the following

empirical formulas:

a, =(0.043+1.64np, +0.043a/ D +0.3257,)(d /D)*, (2<a/D) (3-2-11)

(-0.0836+0.159a/ D+0.1697,)(d /D)’, (1<a/D<2)  (3-2-12)

ay
where,

Py : Tensile reinforcement ratio
p, =(a, +a,)/(2BD)  (when tension in x-main rebars)

p, =(a, +a,)/(2BD)  (when tension in y-main rebars)

a/D : =~ Shear span-to-depth ratio (=1/(2D))
d : effective depth
d =D-d1 (when tension in bottom main rebars)
d =D-d2 (when tension in upper main rebars)
N . .
o Axial load ratio
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The yield rotation of the nonlinear bending beam, ¢y , is then obtained from,

¢,= (L - 1]& (3-2-13)

a, Ko

Reference:
AlJ Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan,
2018 (in Japanese)
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Case 1: In the case that bending springs in x and y directions are independently defined

X-Z plane Y-Z plane

M I)(B

M 'XA
Figure 3-2-3 Element model for column

The rotational displacement vector of the nonlinear bending spring is defined independently,

P =T M1, G0=F, M, atendA (3-2-14)

Pp=FTeMyp, dg=FfzM,; atendB (3-2-15)

where, f ,, f,,, fg, and f,; are the flexural stiffness of nonlinear bending springs at both ends of
the element, and

fyA :]/kyA ’ frn :1/kxA ' fyB :]/kyB : fe :]/ka (3-2-16)

The rotational displacement vector of the nonlinear bending springs will be

¢yA MlyA fyA ] MIyA
¢XA MIXA fXA MIXA
Eon :[[fm] 0 } N | 0 N, -
by 0 [ful]l|M, o M,
¢XB MIXB fXB MIXB
P No| | 0||N's
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The hysteresis model for M —¢ relationship is the degrading tri-linear slip model as used for the

hysteresis model of the bending springs of the RC beam.

B

Py

P

Py

f)
g, "l

(3-2-18)

-5
¢m_¢x

Figure 3-2-4 Degrading Tri-linear Slip Model
(a=0.5, $=0.0 and n1=0.001 as default values)

P
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Case 2: In the case that nonlinear interaction between moment and axial components is considered

To consider nonlinear interaction among M, —M , — N, , the nonlinear bending spring at the member

y
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure

3-2-4.

N B ng
A\M 81 D ‘
A
M yB 1 ¢yB
_—5 ¢
B /\ y
¢X (92 gl g Xi ~ X
[
A
y
M yA? ¢yA
WXA, ¢XA
N A ng
Figure 3-2-5 Nonlinear bending springs
Displacement of the i-th nonlinear axial spring is,
& =&~ Y+ X9 (3-2-19)

Equilibrium condition in the nonlinear section is,
M Iy = Zkigixi = Zki (&, — Vg + Xi¢y)xi
Mlx:_zkigiyi =_Zki (5z _yi¢x +)(i¢y)yi (3-2-20)
N', = Zkigi = Zki (&, — Vg + Xi¢y)

In a matrix form

M", Zi:kixi2 _Zkixiyi Zkixi 8, 4,

M 'x = Z ki yl2 o Z ki Yi ¢x = [kp ¢x (3'2'21)
N Iz sym. z ki &, &,
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Therefore

¢y Mly M'y
g =l M=l 6-222)
&, N'z N'z

For both ends

Do M'ya
Pia M'sa
“ :[[fp‘\] ° } N'en (3-2-23)
bo| |0 [fll|M
Pe M
€mB N'g
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c) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-2-5. This model is called “Multi-spring model” proposed by S. S. Lai, G. T.
Will and S. Otani (1984) and modified by K-N. Li (1988). The section is devided in 5 areas; where 4 corner
areas have steel springs and concrete springs and the center area has one concrete spring.

The strength and the location of nonlinear springs are obtained from the equilibrium condition under

the balance axial force, Ny, .

A — 1
N
> N >
> X (P > X
4_\j ®
3 (O Concrete spring
@ Steel spring
V‘ v
y y
(@) Original column section (b) Multi-spring model
f (tension) (tension)

/S/i ...... 7 .
L S ﬂ ....... —f,

(compression) (compression)

(c) Hysteresis of steel spring (d) Hysteresis of concrete spring

Figure 3-2-6 Nonlinear vertical springs

Strength of steel spring
The strength of the steel spring is one-forth of total strength of rebars in the section, i.e.,

o
fy = As4 : (3-2-24)
where,
A, : Total area of rebar in the section
o : Strength of rebar

y
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Strength of concrete spring
As shown in Figure 3-2-6, the strength of the corner concrete spring is obtained from the equilibrium

condition in the vertical direction under the balance axial force, N, ~—-0.4bDo, thatis,

N
cfu= 7b =0.2bDo, (3-2-25)
Therefore, the area of the corner concrete, A, is,
Ty (3-2-26)
A= (0.8507)

y

Figure 3-2-7 Equilibrium condition in the column section

The area of the center concrete, A,, is the rest of the area of the section,
A, =bD-4A (>0) (3-2-27)
The strength of the center concrete spring is then obtained as,

¢ Ty, =0.85koz A, (3-2-28)
where, Kk is the confined effect (k =1.3) of the concrete.
Location of vertical springs

The distance between the corner springs, X, is obtained from the equilibrium condition regarding the

moment force in Figure 3-2-7,
M, =x,(2.f,+.f, )= x(2,f, + 05N, ) (3-2-29)

Therefore,
My
Xe=——-2—— 9.
* 2,f, +05N, (3-2-30)

Note that M, is calculated from Equation (3-2-6) for the balance axial force, N=N,.
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Example)

To verify the efficiency of the Multi-Spring model for the column element, the M-N relationship is

compared between MS-model and theory using one column element. The column section is shown in the
Figure below:

Column Fditar
COLUMM
: Size (rmam)
T
' B - N=1000kN
N ~ 500
c2 "[ E ] l
L D
[
s | F /T
L]
E ; Verbcal Redorcement
c9 CORMER 4 - 022 =] 50 (Nmmz)
10 300cm
E:l oTHeERs |4 «|- |pzz =] [285
13 _
C14 Shear Reanforcement
C15 = S0 (Mmm2)
2 =|. |06 =|-@|50 =] [295
Copy
Concrete (Mimm2) |_|
Fc |24 50cm
[ a0 | ok |
Figure 3-2-8

Firstly, the strengths and locations of vertical springs are calculated as

a, =15.484 (cm?) o, =1.1f =32.45(kN/cm?) oy =2.4(kN/cm?)
N, =0.4bDog = 2400 (kN) N =bDog + Ao, =6502 (kN)

. f,=251.2 (kN)  f,=1200(kN)  f,, =390 (kN) x, =30 (cm)
Intherange (0 <N <N,), the Multi-Spring model gives

M, =(2,f, +0.5N )x,

which is plotted as the solid line in Figure 3-2-8. The results of Multi-Spring model give smaller values
than theoretical results in the range 0 < N < Nb.
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M-N relationship

6000
Theory
5000 Multi-Spring |
4000
=z
=
z

3000 >
2000

Under—estim%
1000 /
0 L L

0 10000 20000 30000 40000 50000 60000
M (kN*cm)

Figure 3-2-9 Comparison of M-N relationship

K-N. Li (1988) proposed to use the following formulation for deciding the location of vertical springs

instead of Equation (3-2-29), as follows:

M
X =0 (3-2-31)
2,f,+0.5N,
where, N, is the axial force from the dead loads and the live loads acting on the column (N, < N,),

and M, is the yield moment under the axial force N, that is:

N
M,, =0.8a,0,D +o.5NOD£1— . s j (3-2-32)

Doy

For the example column, assuming N, = 1000 (kN),

Xs =35.8(cm)

The yield moment is plotted as the solid line in Figure 3-2-9. It improves the results of Multi-Spring model.
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N (kN)

M-N relationship

6000

— Theory
5000 Multi-Spring
4000
3000

2000 /

1000

0 20000 40000 60000 80000
M (kN*cm)

Figure 3-2-10 Comparison of M-N relationship
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Yield displacement of vertical spring

_2f. \/_\ M., Compression

v

Figure 3-2-11 Equilibrium condition under the axial force No

From the equilibrium condition under the axial force N, as shown in the above Figure, the yield
displacement of the tension side steel spring, | dy, is obtained as follows:

sdy +dc :¢yxs

f
d,=———.d
¢ Sfy+cfys Y
_ Ny +2,f,
c =TT, (3-2-33)
PR
J Ny +2,f,

+7
2.f, +2.f,

The yield displacement of concrete spring, .d y» Is assumed to be the same as that of the steel spring,

.d y=s d y (3-2-34)
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d) Nonlinear shear spring
d-1) Force-deformation relationship

There are two nonlinear shear springs in x and y directions. Hysteresis model of the nonlinear shear springs

is the same as that in the beam element.

Yield shear force

The yield shear force, Qy is calculated as,

0.23

Q, = {0'(53/?5[))(2838) +0.85,/p, -0, + 0.1ao}b~ j (3-2-35)
where,

P, : Tensile reinforcement ratio

Og : Compression strength of concrete

M/(QD) : =~ Shear span-to-depth ratio (=1/(2D))

P, : Shear reinforcement ratio

Oy : Strength of shear reinforcement

o, ; Axial stress of the column

J ; Distance between the centers of stress in the section (= (7/8)d ).

Crack shear force

The crack shear force is, Q. , is assumed as,

Q. =0.3Q, (3-2-36)

Ultimate shear force

The ultimate shear force is, Q,,, is assumed as,

Q, =Q, +ky(s,—s,) (3-2-37)
Q
Qy ky3
Q,
Q. I 0.001k,
-k, =GA/I
Se s, S s

Figure 3-2-12 Shear force - deformation relationship
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Crack shear deformation

The crack shear deformation is obtained as,

S=rl, 7.= g; (3-2-38)

Yield shear displacement
The yield shear deformation is assumed as,

s,=rl, 7, = 1 (3-2-39)
250

Ultimate shear displacement
The ultimate shear deformation is assumed as,
1

- 3-2-40
100 ( )

s.=vl. 7,

The poly-linear slip model (see Appendix) is adopted for the hysteresis of the shear spring.

Q

Figure 3-2-13 Poly-linear slip model for shear spring

The parameters on the backbone curve can be changed in the Option Menu of Column element. The default

values are given as follows:

Manlinear Shear Spring

Qc= |03 Qy (K0 = GA)
Ry= 0.004 Yield shear angle
Ru=|001 - Ultimate shear angle
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Example)

COLUMM
L]
lieg Size (mm)
c2 g8 [600 a1 [40
c3 |
c4 D |600  d2 |40
c5
Cé
c7
c8 —Main Reiforcement Bar
ca comer 4 - |D22 =~
c10 N=500kN
g:; X-side |2 ':'_J' [DH _'_I (NImmM2)
EH Y-side 2 "I- Da2 'l sD I295 e :>!__
C15
"R ~Shear Reinforcement Bar

Copy xside [2 ~|- [D13 ~|-@ |00

3000mm
vsiee [2 |- [D13 ~]-@ 100
sp [295

.cnnumtﬁmmﬂ |
| Fe [2¢ OPTION | Gﬁm

;mmlwn]mn|m|

023

BT R G G

where,
b =600 (mm), j=0.8*d =480 (mm)
P, =0.32 (%), o =240 (\/mm?), M/(QD)~1/(2D)=3000/(2-600) =25
p, =100-a,/(b-x)=0.0042, a,=2D13 =253 (mm?, X=100(mm)
0,y = 1.1(295)=324.5 (N/mm?), o= 1.388 (N/mm?)

Q,=479.2 (kN)
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d-2) Shear spring model 1

Case 1: In the case that shear springs in x and y directions are independently defined

7L>QX

Q, L
w S, z
X
-Q, y
-Q
Figure 3-2-14 Nonlinear shear springs in column

The force-deformation relationship of shear spring is

Ql |k O], 3-2-41
QV B 0 kSV Sy (-- )

156



d-3) Shear spring model 2

Case 2: In the case that nonlinear interaction between shear and axial components is considered

N lzB
M 'yB

M,
N IzA

Figure 3-2-15 Nonlinear shear springs

The force-deformation relationship of shear spring is

Q, Sy
Q, r=[ky |45, (3-2-42)
N &

z Sz

The stiffness matrix [ksp] is obtained by the Plastic Theory as explained in the Appendix (not

implemented).
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e) Modification of initial stiffness of nonlinear springs
The same modification can be done for the nonlinear springs of column element as described for those of

beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:

~

&
N
0
0
o) it
AN
\_/\ Moment distribution
M
M , M M
M y / / M y /O
6E
’ _ i - +
M. |4 ko = | M.,
(N Nhicl
o, 6, 0 ¢ 4 ¢
Elastic element Nonlinear bending spring
Increase @ Reduce @
stiffness stiffness
M M
III M y —-:?—O
+
M C
¢
Elastic element Nonlinear bending spring

Figure 3-2-16 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,

ko = Elé—A (3-2-43)

where E; : the material young’s modulus, A; : the spring governed area, and p; : the length of assumed

plastic zone. When p, — 0, it represents the infinite stiffness for rigid condition.

From Equation (3-2-20), when we consider the flexural flexibility in x-z plane, the flexibility matrix for the

nonlinear MS section is,

z

{fy}z ]/iZOk(;XiZ J/Zio’,ké {I\lilly }z IOZ/ZOEAXi2 pZ/ZT):E,A{In'I: } N

Also, introducing the flexibility reduction factors, 7, (< 0), 7, (<0), 7, (< 0), the flexibility matrix of

the elastic element is,

o I
"3El, T eEI

I X 3-2-45
[fe)=| o5 o249

V2 e
6EI, '?3El,

Il
Yo a_

Making the modified flexibility matrix to be identical to the original one,

r 1 1 n le II II
I | s+ 7 - 0
3EI, 6EI Zi“EiAﬁxi 3El, 6El,
I' P,, I'
0 = z + 0
3EI, > EAX 7235|y
I’ i
sym. Pa P2 '
. sym. + + ¥, —
L EA original y Z EiA z EiA 7o EA
B i i _'mod ified
(3-2-46)
Since Z A1Xi2 =1, this gives the flexivility reduction factors as:
3 3 1
71:1__pz1’ 72 :1__p12’ Yo =l__(pzl+p22) (3-2-47)

Adopting p,, = P,, =—— as discussed for beam element, the reduction factors will be:
71 72 10

71=7,=07, y,=08 (3-2-48)
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3.2.2 Steel Column

a) Section properties

———
! !
{5 t2
H —e {, —o {; —u
L B d L B | L D
T i T 1 ?

B : Width, H:Height, tw,ts, t1, to, t: Thickness

Figure 3-2-17 Steel Column Section

Area of section to calculate axial deformation

A, = total area of section (3-2-49)
Area of section to calculate shear deformation
A= (7)) (3-2-50)
A, =0.5A,

Figure 3-2-18 Area of section for shear

Moment of inertia around the center of the section

1) H section
BH® - (B-t,)(H -2t,)° _
| = : along strong axis (3-2-51)
12
2t B®+(H -2t,)t,°
| = : along weak axis (3-2-52)
12
2) Box section
BH®-(B-2t)(H-2t,)°
| = ( ) 2) (3.2.53)

12
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3) Circle section
=7 [p* - (D-2t)"]
64
Moment of inertia for torsion

1) H section

] 2Bt ° +(H -2t,)t,°

3
4) Box section

_ 2t1t2(B _tl)Z(H _tz)z

J

2

BHt,t, —t,° —t,
5) Circle section

1= -]
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(3-2-56)
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b) Nonlinear bending spring

To consider nonlinear interaction among M, —M , — N, , the nonlinear bending spring at the member

y
end is constructed from the nonlinear vertical springs arranged in the member section as shown in the

following Figure.

NZB’ ng

M yB 1 ¢yB

S X% >
[
A
y
M yA? ¢yA
WXA’ ¢XA
N A ng
Figure 3-2-19 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

& =&~ Y+ X9 (3-2-58)

Equilibrium condition in the nonlinear section is,
M Iy = Zkigixi = Zki (&, — Vg + Xi¢y)xi
Mlx:_zkigiyi =_Zki (5z _yi¢x +)(i¢y)yi (3-2-59)
N', = Zkigi = Zki (&, — Vg + Xi¢y)

In a matrix form

M", Zi:kixi2 _Zkixiyi Zkixi 8, 4,

M 'x = Z ki yl2 o Z ki Yi ¢x = [kp ¢x (3'2'60)
N Iz sym. z ki &, &,

Therefore

163



4, M’ M

P S VI B T VS (3-2:61)
gZ N'Z N'Z

For both ends

Dyn M
Din M’
Eon =[[pr] 0 } N'., (3-2-62)
be| |0 [fell|m
be M
€n Nz

Hysteresis model of nonlinear bending spring is defined as the moment-rotation relationship under the
anti-symmetry loading as shown in Figure 3-2-20. The initial stiffness of the nonlinear spring is supposed

to be infinite, however, in numerical calculation, a large enough value is used for the stiffness.

B —7
N
0
0
AR
AN
u Moment distribution
M
M M M
M, M, |—F
= +
kO ,\ k p X0 |
6, Z 9y ¢
Elastic element Nonlinear bending spring

Figure 3-2-20 Moment — rotation relationship at bending spring
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Yield moment force (full plastic moment)

1) I shape
— I
tr
—e {,
L B i
T T

b)

When the neutral axis is inside the web, i.e, N < Ao, =t ,(H-2t;)o,

M, =M, -y, t,oc (3-2-63) Bt; o,

v Te ey L H ~2t,)o,

2
where
1

Myoz[Btf(H —tf)+ZtW(H—2tf)2}ay U
y _ N " MyO _

° 2o, H

When the neutral axis is inside the flange, ie, N> A0, =t,(H-2t;)o,

H H
M y = B(? — yO j(? + yO jO'y (3'2'64) 8 E ~ yo

where

N—N
) /
y
N, =[2Bt, +t,(H-2t, )b, U
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2) H shape

a) When the neutral axis is inside the web, i.e., N <A,o, =t ,Ho,

2 1 Bt
M, =M -y, Ho, (3-2-65) 5 D%y
where %tW(H -2t;)o,
1 2 1 2
MyO :|:EB tf +th (H—th):|0'y
yo = N
° 2Ho, R .
B
b) When the neutral axis is inside the web, i.e, N <A,o =t ,Ho,
B B 1
My —th(E—yOJ(E‘F yo)ay (3-2'66) tf(EB_ijay

where

N-N
YO=1 ~+B
2\ 2,0,

N, =[2Bt, +t,(H -2t, ),

3) Box shape

—_—— I
t
H
—e {;
! B )
T T

a) Moment around x-axis
M, =M, (Ishapebychanging t, —2t,, t; —>t,) (3-2-67)
b) Moment around y-axis

M, =M, (Ishapebychanging t, —2t,, t; >t,, B<>H) (3-2-68)
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4) Circle shape

*—e tl
L D i
T 1
M, =M, cos{%} (3-2-69)
y

where

M,, =(D-t,)to,
N y = 7Z'(D —tl)tlo'y

Yield rotation
The yield rotation is

0, =M, Ik, K, ZGIE (3-2-70)
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c) Nonlinear vertical springs
The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-2-21. This model is called “fiber model”. The section is devided in several

areas which have steel springs.

30°
— (_A_\ 1
—— 0 0 O olo 0o o o olo L
H2t95 { o t ) o N
o o) ) L/
O W/ O
H O O O —eot; it
T LI o /i
O O S
(@) Oy (@)
/S 01 O
_4 O O O O O O o o O ©O / !
L B d L B |
? ) ? ) 1J= 'lr
B : Width, H: Height, tw,ts t1, tz, t: Thickness
F (tension)
Y 7
(compression)
Hysteresis of steel spring
Figure 3-2-21 Nonlinear vertical springs
Strength of steel spring
The strength of the i-th steel spring is,
f,i=Ao, (3-2-71)
where, A : the spring governed area, o : the strength of steel
Yield displacement of steel spring
The yield displacement of the i-th steel spring is,
dy,i = fy,i /k(l)’ k(l) = EsA| (3-2-72)

where Es : the young’s modulus of steel
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The same modification can be done for the nonlinear springs of column element as described for those of
beam element by reducing the initial stiffness of the nonlinear spring and increasing the stiffness of the

elastic element as shown in the following figure:
M
7B

N
0

0

o) it

AN

Moment distribution

M
M M M
M, —F
K = 6El = +
0o~ | i
o Ny =
6, Z ?, ¢
Elastic element Nonlinear bending spring
Increase Reduce
stiffness stiffness
M M
N M, "‘"Z%
. s :
é, ¢

Elastic element Nonlinear bending spring

Figure 3-2-22 Modification of moment — rotation relationship

Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,

kg = EA (3-2-73)

P,
where E; : the material young’s modulus, A; : the spring governed area, and p; : the length of assumed
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plastic zone. When p, — 0, it represents the infinite stiffness for rigid condition.

When we consider the flexural flexibility in x-z plane, the flexibility matrix for the nonlinear MS section is,

]/Zkgxf 0

-1

Also, introducing the flexibility reduction factors, 7, (<0), 7, (<0), 7, (< 0), the flexibility matrix of

the elastic element is,

yak

pz/ZEiAiXiz 0
}z 0 pZ/Zi:EiA

Mly
le

V1

Yo a_

Making the modified flexibility matrix to be identical to the original one,

L original

pzl + II _ II
S EAX 7 3El 6EI,

y

pzZ I'

N'Z

y

+
S EAX 72 3E]

sym.

This gives the flexivility reduction factors as:

3 3 1
7n=1-=Pu, 72=1-=Dn 7 :1__(pzl + pzZ)

Adopting p,; = P, =E

1=y, =07,

7, =0.8

170

y} (3-2-74)

(3-2-75)

pzl + pzZ

ZEiA ZEiA

(3-2-76)

(3-2-77)

as discussed for beam element, the reduction factors will be:

(3-2-78)

+7oa

mod ified



3.2.2 Column with direct input

Figure 3-2-23 Element model for column

In case of direct input for Moment-Rotation relationship, we neglect nonlinear interaction among

M, —M, =N, and define the flexural stiffness of nonlinear bending springs in X and Y directions

y z
independently. The rotational displacement vector of the nonlinear bending springs will be
¢yA |\/IIyA _fyA ] |\/IIyA
¢xA M IxA fo M IxA
€ _ [pr] 0 NIzA _ 0 NIzA
= [ ' = ' (3-2-79)
¢yB 0 pr M vB fyB M vB
¢><B M le fxB M le
8ZB N IzB L O_ N IzB

The displacement vector of the column element is obtained as the sum of the displacement vectors of

elastic element, nonlinear shear springs and nonlinear bending springs,

elyA z-IyA ¢yA 77yA M IyA
0y T D Mye M
o' ' M'
I><A _ I><A N P N Ta _ [fc]< IxA (3-2-80)
0's T 8 de Ur: M'se
o, o', g, 0 N,
9'2 0'2 elastic element 0 bending spring 0 shear spring T 'Z
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The flexural matrix [f.] is;

f

[fC]:

sym.

L o
M UBEL, kyl® 6EIl,  k,l?
I 1

fo+—+—2

3El, k[

172

0
I 1 o 1
3El, kI 6El, kI
LI
®O3EL k)

L

EA

(3-2-81)




3.2.3 SRC Column

a) Section properties

b1, b,

t
tf T tf
2 Tba
tar Ihil il %”" Ihl
Rl

f* Type 1 i Type 2 i Type 3

bl tf
F
tf Pﬂ" I
tw Ihl

—
h1l

( Type 4 (— Type 5

B : Width of beam,

D : Height of beam,

di : Distance to the center of x-direction main rebars,
d2 : Distance to the center of y-direction main rebars,
al : Area of x-side main rebars,

a2 : Area of y-side main rebars,

ac : Area of corner main rebars

bl : Width of steel

hl : Height of steel

tw : Thickness of web

tf : Thickness of flange

Figure 3-2-24 RC Column Section

Area of section to calculate axial deformation

A, =BD+(n; -1)a, +a, +a, +ae ) (3-2-82)
where,

nge =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (Ec)

ag =n,(b,—t,)t, +nht, :Area of steel

n; =2, n,=1: Typel, Type2,
n, =4, n,=2: Type3
n, =3, n,=2: Type4, Type5
Area of section to calculate shear deformation
A, =BD/x, k=12 (3-2-83)
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Moment of inertia around the center of the section

DB? B ?
|, = o +(ng -1 (ac+al)(5—d1j +Is'y] (3-2-84)
BD? D ?
|, = o +(n. -1 (ac+a2)(3—d2J +IS’X] (3-2-85)
where
Is : Moment of inertia of steel
IS,x IS,y
T Loy RS )
of Jn| =gl -Gt h-2t )l =2l e (-2t
Type 1
twtf
= Ip2 l, 1,

Type2 1

|ﬂ|

ItWEﬂIIM I +1, I, +1,
Type 3

twtflb:l h1 2

L I+, I,+IH+AHE
Type 4 hl

tf

ts ]hl I|+|H+AH(%j I+ 1y
Type 5

b) Nonlinear bending spring
Hysteresis model of a nonlinear bending spring is the same as RC beam.

Crack moment force
For reinforced concrete elements, the crack moment, M is calculated as,

M, =0.56,/0, Z, +% (3-2-86)
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Yield moment force

The yield moment, M is calculated as,

My =M e +M (3-2-87)
where
M rc :Yield moment of reinforced concrete
M, rc =0.8a,0,D +0.5N, D(l— j (3-2-88)
Og
M, :Yield moment of steel
M Y,S,x M y.S.y
|ﬂ|
tf
M, M.,
Type 1
tf
T M M,
Type2 Rl
|ﬂ|1:f
I%Ii[hl My|+MyH Ivlyl+lvlyH
Type 3
tf
tw Ib:l
MyI+MyH MyI+MyT
—
Type 4 hl
i
tw ]hl My +M; My +My,
Type 5

Myl :|:b1tf(hl_tf)+%tw(hl_2tf)2j|o-ys
= I:lblztf +£th (hl - 2tf ):lo-y S
blt (h —t )+ Lt w(h —t )

H / //// i
| &;; M ¢

yT

l l
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Appendix 3.2:
A-1. Hysteresis of Steel and Concrete Springs of Multi-Spring Models for RC elements
a) Steel spring

For the steel spring, the maximum-oriented model is adopted for the hysteresis before yielding, and the

tri-linear model is adopted after yielding as shown in Figure 3-2-15.

(a) before yielding point (b) after yielding point
S fy
sty ..... [ B
Ky =
: P,
.y

Figure A-1-1 Normal tri-linear model for steel spring

The hysteresis of steel spring has the degradation point at the forces, vsfy and ¢.f , where v and ¢

y )
are the arbitrary parameters (v <l ¢< l). The STERA_3D Program adopts the values as:

v=1/3, ¢=05 (Al-1)
Then, the yield deformation, sd;, may be obtained by Equations (3-2-31) and (3-2-13) considering the

reduction factor y .

X
sdy = 9% (A1-2)
y Ny +2,f,
+7
2.f, +2.1,
~ 1 1M
¢ =| ——=|— (A1-3)
Y {ay ;/J Ko
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b) Concrete spring
The hysteresis of concrete spring is also defined as tri-linear hysteresis model as shown in Figure 3-2-16.

After compression yielding, strength degradation is considered by reducing the strength of the target point

in reloading stage.

dc

fc

fy

(a) hysteresis rule after compression crack point

fc

fy

(b) hysteresis rule after compression yield point

(c) strength degradation rule

Figure A-1-2 Tri-linear hysteresis model for concrete spring
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A-2. Hysteresis of Poly-linear Slip Model for Shear Springs for RC and Masonry members

Reference:

FRAME-D manual, Tohoku University, 1983 (in Japanese)

The poly-linear slip model is defined as the following hysteresis model.

(DRX, FRX)

FC a .
B SF
-DU DY S/(F,/ I I 0.15 FRX i
i oasFRN § L oY U
1 -FC
(DRN, FRN)
—————————————— -FY SSE
(45Rx, FRX)
|FRX |+|FRN|
SE =
IDRX|+|DRN|
S1=2xSE
S2=1.2xSE (OLL FLY

FL1=FL2=0.15x FRX
FL3=FL4=0.15x FRN

Figure A-2- Poly-linear slip

(DRN, FRN)

hysteresis model for shear spring

178

DISP



3.3 Wall
3.3.1 RC Wall

a) Section properties

L
A

y
N PR : Width of wall,
t : Depth of wall,
C1,C2 : Side columns,
aw : Area of rebars in a wall panel

Figure 3-3-1 Wall Section

Area of section to calculate axial deformation

Ay = Ay + Ao L, +(ne —1)a,) (3-3-1)
where,

Ay e Ao : Area of section of side columns for axial deformation

ne =E,/E, : Ratio of Young’s modulus between steel (Es) and concrete (Ec)

Area of section to calculate shear deformation

As =Aj o+ A+, Ik, k=12 (3-3-2)

where,

A A - Area of section of side columns for shear deformation

Moment of inertia around the center of the section

2 2
tl,,’ | I
=1+ o+ 152 + A1 (%J +A e, (%1} (3-3-3)
where,
lycir lyeo : Moment of inertia of side columns
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b) Nonlinear bending spring

For the out of wall direction, each side columns behave independently in the same way as the column
element. Therefore, we discuss here only the hysteresis model in the wall panel direction. Hysteresis model
of nonlinear bending spring is defined as the moment-rotation relationship under the symmetry loading in
Figure 3-3-5. The initial stiffness of the nonlinear spring is supposed to be infinite, however, in numerical
calculation, a large enough value is used for the stiffness.

-M
(LN
V

/

i

\ (T
/-
u Moment distribution
M
M ) M M
M, , M,
2Bl _
M. |- ( / Ko = B - * M.,
,’?I;hk :ayk \kp ~ 0
6, 6, @ 4 ¢ o4 ¢
Elastic element Nonlinear bending spring

Figure 3-3-2 Moment — rotation relationship at bending spring

The yield moment, M y Is obtained from the equilibrium condition in Figure 3-3-6 as,

M, = aSO'ylW + O.SaWO'WyIW +0.5NI,, (3-3-4)
where,

a, Total area of rebar in the side column

o, Strength of rebar in the side column

a, Total area of vertical rebar in the wall panel

Oy Strength of rebar in the wall panel

N Axial load from the dead load
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/ L, /

Figure 3-3-3 Equilibrium condition under yielding moment

The crack moment, M isassumed to be,

M, =0.3M, (3-3-5)

The tangential stiffness at the yield point, ky , Is obtained from the following equation:

k,=0.2K, (3-3-6)

The yield rotation of the nonlinear bending spring, ¢§y , is then obtained from,

1 M
== _1|—X -3-
4, (ay JKO (3-3-7)

where, the stiffness degradation factor, «,, is assumed as,

a, =0.02 (3-3-8)
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Case 1: In the case that bending springs are independently defined

z
X
y

Figure 3-3-4 Nonlinear bending springs in the wall
The rotational displacement vector of the nonlinear bending spring is defined independently,
Gps = FaM' py Dgy = F,eiM' g, iny-direction at Side Column 1
Peny = F oM o Dgo = f,g5,M',g, in y-direction at Side Column 2 (3-3-9)
Bonc = FacM'yacs g = fecM'yg.  in x-direction at center Wall panel
where, f, T, fu, feooand ., fg. are the flexural stiffness of nonlinear bending springs

at side columns and the center wall panel of the element, and
fy :]7/kxA1 ' fes :1/kx31
far =K, s far =K, (3-3-10)
fone :]7/kyAC , fo1 =K

Dync M IyAc I fyAc LY 'yAc
Paa M fyt M
Pyaz M2 fiaz M2
e | _ [ fPA] 0 N | 0 N
ou| | 0 [1.]|[M . M
Pup1 M6 fres M1
Pua2 M2 fre2 M6z
Eme N L 0] N
(3-3-11)
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The hysteresis model for M —¢ relationship is the degrading tri-linear slip model as used for the

hysteresis model of the bending springs of the RC wall.

B

9y

P

Py

M M
K =n| 2y ko= Dy |9y
p n((py] r (¢y]

(3-3-12)

R
¢m_¢x

Figure 3-3-5 Degrading Tri-linear Slip Model
(0=0.5, p=0.0 and n=0.001 as default values)

D
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Case 2: In the case that nonlinear interaction between moment and axial components is considered
To consider nonlinear interaction among M, — M y ~ N, , the nonlinear bending spring at the member
end is constructed from the nonlinear vertical springs arranged in the member section as shown in Figure
3-3-2.

y
Figure 3-3-6 Nonlinear bending springs

Displacement of the i-th nonlinear axial spring is,

& =&, Xy in a wall panel
& =&, — Y+ X0y in a side column 1 (3-3-13)
& =&, — Vi + Xify in a side column 2

N',.,&

Figure 3-3-7 Equilibrium condition in the wall panel direction
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In the wall panel direction, all vertical springs in the nonlinear section are assumed to work against the

moment and the axial force. The equilibrium conditions are,
Nc N1 N2
M =D ke X + D_kig X + D_KigX,
i i i

= iki (6, + Xi¢yc)xi +§:ki (€ = Yidha + Xi¢yc)xi +NZZ:ki (6 = Yitho + Xi¢yc)xi

Dy

Ne+N1+N 2 N1 N2 Ne+N1+N2 ¢y
:{ Zkixiz _Zkixiyi _Zkixiyi zkixi:| ¢X1
i i i i x2

£

zC

(3-3-14)
Nc N1 N2
N', = Zkigi + Z:kigi + Zkigi

= chkl (8zc + Xi¢yc) +Zki (820 - yi¢xl + Xi¢yc) +Zki (‘920 - yi¢x2 + Xi¢yc)

Dye
New NN 2 N1 N2 Nc+N1+N2 ¢il
Z{ Zkixi _Zkiyi _Zkiyi Zki} ¢
: i i i X2
&

zC

(3-3-15)
where, Nc, N1 and N2 are the number of vertical springs in a wall panel, side column 1 and side column 2,

respectively.

side column 1 side column 2

Figure 3-3-8 Equilibrium condition in the out of wall direction
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In the out of wall direction, we establish the equilibrium condition for each side column independently. The

equilibrium condition for the side column 1 is,

N1
M', = _Zkigi Yi

= _Z ki (gzc - yi¢xl + Xi¢yc)yi

Pye
N1 N1 , N1 b
:|:_Zkixiyi Zkiyi 0 _Zkiyij| y
i i i X2
gZC
(3-3-16)
Also, for the side column 2,
N2
M, = _Z kigy;
N2 I
= _Z I(i (gzc - yi¢xl + Xi¢yc)yi
Py
N2 N2 , N2 b
=|:_zkixiyi 0 zkiyi _zkiyi:| p
i i i 2
gZC
(3-3-17)
In a matrix form
[ Nc+N1+N2 , N1 N2 Nc+N1+N2 ]
Zkixi _Zkixiyi _Zkixiyi Zkixi
M' NI N1 I N1 /) @
yc yc yc
YE _Zkixiyi Zkiyiz 0 _Zkiyi P y
x| , n , X1 [k X1
VE = N2 N2 N2 é P p
lez _Zkixiyi 0 Z:kiYi2 _Zki Yi || -
© NCNLEN2 N1 'N2 NCANLEN 2 €z £
Zkixi _Zkiyi _Zkiyi Zki
(3-3-18)
Therefore
¢yc M ch M |yc
X —. M 'X M 'X
Pa —[k, b= ke (3-3-19)
¢x2 M X2 M X2
gZC N 'ZC N IZC

For both ends
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c¢) Nonlinear vertical springs

The nonlinear bending spring is constructed from the nonlinear vertical springs arranged in the member
section as shown in Figure 3-3-6. This model is based on the concept of “Multi-spring model” and
modified for the wall element by Saito et.al. The vertical springs in the side columns are determined

independently in the same way as the Multi-spring models of columns. The wall panel section is devided in

5 areas, and a steel springs and a concrete spring are arranged at the center of each area.

\
%

» i [
X » [
v
y
(a) Original column section
1 2 6 7
@ ©. . ®
50 ® ® X ® I (?{I_O
© 11 12 1 14 15 e e
3 4 8 9
y

(O Concrete spring

@ Steel spring

(b) Multi-spring model

£ (tension)

(compression)

(c) Hysteresis of steel spring

(tension)

(compression)

(d) Hysteresis of concrete spring

Figure 3-3-9 Nonlinear vertical springs
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Strength of steel spring in wall panel
The strength of the steel spring in the wall panel is one-fifth of total strength of rebars in the section,

_ awawy

fy = c (3-3-21)
where,

a, : Total area of vertical rebar in the wall panel

Oy : Strength of rebar in the wall panel

Strength of concrete spring in wall panel
The strength of the concrete spring in the wall panel is one-fifth of total strength of concrete in the section,

0.85A,0%
= —5 (3-3-22)
where,
Ap : Total area of wall panel section
Opg : Compression strength of concrete

Yield displacement of vertical spring in wall panel
The yield displacements of steel and concrete springs in the wall panel are assumed to be the same as those

of the springs in the side columns.

d) Nonlinear shear spring
There are three nonlinear shear springs in x direction in wall panel and y direction in side columns.

Hysteresis model of the nonlinear shear springs is the same as that in the beam element in Figure 3-1-4.

Yield shear force

The yield shear force, Q, is calculated as,

0.23
Q, = {0-(53/?(5[))(3338) +0.85,/p, -0,y +0.10, }b j (3-3-23)
where,
b ; Equivalent thickness of the wall (Z A/IWl )
j : Distance between the centroids of tension and compression forces (0.8l,,)
P, : Tensile reinforcement ratio (100a, /(b-1))(%)
Op : Compression strength of concrete ( N/Z A)
M/(QD) : Shear span-to-depth ratio (=h/(2l,,))
:1(h /() <1), 3 (h /(l,)> 3)
P, : Shear reinforcement ratio
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Oy : Strength of shear reinforcement

o, : Axial stress of the column

Crack shear force

The crack shear force is, Q. , is assumed as,

_Q
Q.=

Ultimate shear force

The crack shear force is, Q,, is assumed as,
Q =Q.

Crack shear deformation

The crack shear deformation is obtained as,

Q.
GA

s.=vl, .=

Yield shear displacement
The yield shear deformation is assumed as,

1

Sy:yyl’ yy:ﬁ

Ultimate shear displacement
The ultimate shear deformation is assumed as,

S -1

AT

le Qxc
—_—

- Q yl - Q XC - Q y2

Figure 3-3-10 Nonlinear shear springs in the wall
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ky3 =000%, 4

Qy ky3 """"""""

Qu =T S

Q .....

o/ k; = GA/I
K,
S, s, S, S
Figure 3-3-11 Force—deformation relationship of shear spring
Example)
-y o || & || 3
O W eas < © <
Unit: mm
6000 0
Cl W1 Cl1

v A E|V T/l weightkn) |1000. Height(mm) | 3000. A

N=500kN N=500kN N=500kN

h L 3000mm
XwW i Q
Q c/lj\j —1, yc /V’
600mm

Shear strength of the side column in y-direction ch = 479.2 (kN) (see Column element)
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WALL

Type Size
| e .
e | | [0 || Be——fp)
w4 —_
W4 L
W5
W6
Vil
:::g Shear Reinforcement in a Panel
W10 SD (N‘mm2)
w11 |2 «|- D13 ~|-@|[150 | 295
W12
W43
Copy Concrete [ Nfimm2 )
Fc |24

0.053p,”* (o7, +18) .
Q, ={ v /(tQD)+BE)12 +0.85,/p, -0, +0.10, tb-j

where,
b=>" A/l =1652528/660 = 250 (mm), j = 0.8l,,,=5280 (mm)
p, =100a, /(b-I) = 100(3096.8)/1652528=0.187 (%), & =240 (N/mm?),
M/(QD)~h/(2l,,)=3000/13200 < 1 > =1.0
p, =100-a,/(b-x)=0.0067, a,=2D13 =253 (mm?), X =150 (mm)
Oy = 11(295) = 324.5 (N/mm?), o, = N/ A=1000000/1652528=0.605 (N/mm?)

Q,,, = 3458.37 (kN)
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e) Modification of initial stiffness of nonlinear springs

The same modification can be done for the nonlinear springs of wall element as described for those of
beam and column elements by reducing the initial stiffness of the nonlinear spring and increasing the
stiffness of the elastic element as shown in the following figure:

-M
(LN
7N

/

S P

\ (T
/-
u Moment distribution
M
M ) M M
M, , M,
2E
’ e = +
M. |- ( / ko = | M.
ko\k =ayk \Kp e
o, 6, o 4 ¢ o4 ¢
Elastic element Nonlinear bending spring
Increase Reduce
stiffness stiffness
M M
+
M C
¢
Elastic element Nonlinear bending spring

Figure 3-3-12 Modification of moment — rotation relationship
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Introducint the concept of “plastic zones”, the initial stiffness of the i-th multi-spring can be expressed as,

= Ep—A (3-3-29)

where E; : the material young’s modulus, A; : the spring governed area, and p; : the length of assumed
plastic zone. When p, — 0, it represents the infinite stiffness for rigid condition.

In the same manner of beam and column elements, introducing the flexibility reduction factors,
7, (<0), 7, (<0), 7, (< 0), the flexibility matrix of the elastic element is,

o 7
"U3El. T 6EI
I'
72361
o
U361, 6El,
Il
[fu]= 72 (3-3-30)
3EI
o
"3E1, T 6El,
I'
sym.
y 72 38,
Il
7/—
I TEA

Also, adopting p, = E as discussed for beam and column elements, the reduction factors will be:

v, =v,=07, y,=08 (3-3-31)
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f) Reduction factor of shear stiffness

If shear cracking occurs in the reinforced concrete wall, the shear stiffness decreases. The following graph
shows the test results of the relationship between the stiffness reduction factor £ and the lateral drift

angle R x107°(referred from “Standard for Structural Calculation of Reinforced Concrete Structure”,
Architectural Institute of Japan).

1.0
L e ]
0.8 ——
N\
N
0.6
0.4
0.3 \
~
N
\\
0.2 AN
T .)$§
0.1 %
0.1 0.2 0.3 0.4 0.6 1.0 1.5 2.0 3.0

— R(X107)
OTJ’I’B'--—I}‘]O ."I"_IUB=1,{B
For example, if the lateral drift angle is over than 1/1000, the reduction factor becomes less than 0.2.

Therefore, STERA 3D assumes the “Reduction Factor for Stiffness” is 0.2 in the default setting for the

option of the RC wall element.

Wall Option Editor >

WALL OPTION

1. Amplification Factor for Steel Strength [0, 2] 11
2. Reduction Factor for Stiffness [0, 1] 0.2

3. Reduction Factor for Strength [0, 1] 1

ok |
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3.3.1 Direct Wall

Direct Wall identifies the force-displacement points in the back-bone curves of the nonlinear shear spring

and the nonlinear bending spring.

Figure 3-3-13 Element model for wall

Different types of hysteresis model are prepared for the force-deformation relationship of the spring.

g ) g )
y y
LIV L —
/ ..... Ky f. L 1
L kO Ui Z ko Ui
(a) Normal-trilinear (b) Degrading-trilinear

Figure 3-3-14 Hysteresis model of the shear and bending springs
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3.3.2 Steel Wall (Brace)

a) Buckling of brace

W | Y

Figure 3-3-15 Element model for brace

Under the compression load, the stress of buckling failure is calculated theoretically as

O

_7z2E

2/2

L .
where A =—: slenderness ratio

If o >0, (strength of steel), the compression failure will occur before buckling.

o

P ———

0.6F

Figure 3-3-16 Relationship between buckling stress and slenderness ratio
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The AlJ (Architectural Institute of Japan) guideline adopts the following equation for the stress of buckling.

2
Oy = {1—0.4(/1//1p) }ay, for A<A, (3-3-32)
o, = 0.6 o, for 1> 4, (3-3-33)
(7/4,)
7°E
where A = : Critical slenderness ratio
P 0.60

b) Hysteresis model
The hysteresis model proposed by Wakabayashi et. al. is adopted in STERA_3D (hereinafter referred to as
Wakabayashi model). The model consists of four Stages A, B, C and D.

o [N/mm?] o [N/mm?]
300.00 300.00
250.00 Stage A 250.00 1
200.00 E 200.00 1
150.00 =60 150.00 —2=60
100.00

50.00

100.00
/ 50.00 / Stage D

0.00 ; 0.00 /
-50.00 %\/ -50.00 / \/
-100.00 ] -100.00 ]

-150.00 -150.00 1

-200.00 -200.00 1

-250.00 ¢ 250,00 &
-0.004 -0.002 0.000 0.002 0.004 -0.004 -0.002 0.000 0.002 0.004
Stage A: tension failure with constant strength Stage D: unloading stage

o [N/mm?] o [N/mm?]

300.00 300.00

250.00 1 250.00 1

200.00 1 200.00 1

150.00 A=60 ] 150.00 A=60 Stage C

100.00 / 100.00 Stag il?/

50.00 1 50.00 1
0.00 . x 0.00 ’ x

-50.00 1 -50.00 / 1

-100.00 g -100.00 e,

-150.00 StageB | -150.00 ]

-200.00 1 -200.00 1

-250.00 € .250.00 &
-0.004 -0.002 0.000 0.002 0.004 -0.004 -0.002 0.000 0.002 0.004

Stage B: buckling failure and strength reduction Stage C: tension stage after buckling
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The compression curve (Stage B) and the tension curve (Stage C) are defined using the nondimensional
strength and deformation as,
n= N/ N, : nondimensional strength

o0 =A/ A, : nondimensional deformation

where N :axial load, N, = Ao, : axial strength (A: area, o : yielding stress of steel)

A displacement, A, =Le, = Lo, /E: yield deformation

Both curves are assumed to be the following form
n= 1/ (as +b)’

where  a, b parameters of the function of nondimensional Euler load n. =o. /o, = ﬁZE/(izay)

b-1) Compression Curve
Compression curve (Stage B) is defined from the following empirical formula,

n=1(ps+p,)"”

_ 10/ ng -1
3
Compression strength n_ is also on this curve, therefore,

nc :]7/( plé‘c + p2 )]/2

where  p , Pp,=4/n.+0.6

or p,n%5. + p,n,—1=0
Since nC:&:M:ﬂzg
N, E(A/L)A A

Finally n, is obtained by solving
plnc3 + PN, -1=0

b-2) Tension Curve

Tension curve (Stage C) is defined from the following empirical formula,

n =1/( p35+1)3/2

1

Where s = v1a
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| 3 = -:5‘_"1, 6=>0 [Stage A

8P < 8<<8h, $>0 [Stage B] :
' : = Pl .

" Jt@a=8 | A,
- [09<<a<s” [Stage D]
i P+ @—8") (" =N [ (67 -89
e / lp | 5
] S
«n ' T,
g . B where
—fe(8” +n,—8) : Fe(X)=(pX+p)1"
§ <869 §<0 [Stage C]| Fr(X)=(p X +1)~32
b-3) Movement of Tension Curve
Movement of tension curve x is defined as follows:
x=1In(q,8, +1)—q,s S, S

where g :%, 0, =0.115/n_ +0.36

b-4) Movement of Compression Curve
Movement of compression curve y is defined to satisfy the following relationship

Y _%

yO 5b0
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b-5) Movement of Compression Curve

The point shifting from the unloading Stage D to Stage C is obtained by assuming that the
plastic tension deformation o, is proportional to the plastic compression deformation o, as

é‘t = q35c
2
where @, =0.3,/n; +0.24 1
_\l
50
Example
A =60
B 01 Ty 00
25000 15000
M oda W D
15000 S A 1 ] {8600 )
LiHh 40 100,00
S000
b B
(IR
i 0H}
=
500060 S
= [ CH M
150,00 - | 0 )
= EH H = R0 )
IS000 - 201) 00
004 0001 0002 -000] 0000 0001 0002 0003 0004 A G S AHER S0 O] MRl DAHMD D0a] OO 0005 GoE
Starting from compression Starting from tension
A =120
B 001 B 01
250000 250040
200,00 —in 00 ki
150,00 15006
[EL IR ] 1iH0L00
LTI
00
.0
R
]
5000
= DD (M)
150,00 100,00
i T 0007 0002 0000 0000 0001 000 0007 0004 -0.004 -0.001 -0.002 -0.001 0000 0001 0002 0.003 0.004
Starting from compression Starting from tension
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M. Shibata, T. Nakayama and M. Wakabayashi, "Mathematical Expression of Hysteretic Behavior of
Braces", Research Report, Architectural Institute of Japan, No. 316, pp.18-24, 1982.6 (in Japanese)
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3.3.3 SRC Wall (Brace)

a) Section properties

i J‘@ e

! I R

11 |

Figure 3-3-17 Element model for SRC wall (RC wall with steel brace)

b) Nonlinear shear spring

Yield shear force

The yield shear force, Qy is calculated as,

Qy = Qy,Rc + Qy,s (3-3-34)

where

Q,rc  Yield shear force of reinforced concrete

0.053p,°% (o, +18) .

= +0.85 -o,, +0.1o, b- 3-3-35

Qe { M /(QD) + 0.12 N Pu Gy 8200 (0] (3:3:39)
Qs - Yield shear force of steel

Qys =As 0,5 COSR (3-3-36)
where,
A ; Area of steel (mm?)
Oys ; Strength of steel (N/mm?)
R : Angle of steel
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3.4 External Spring

o Z
yA B
A A
S — BB, 5 X

yB

Figure 3-4-1 Element model for external spring

3.4.1 Lift up spring

tension

Ko

% % compression

ground

Figure 3-4-2 Hysteresis model of the external spring

In STERA 3D, if there is no building element at one end of the external spring, this end is considered fixed. Such
spring is used to express the stiffness the ground attached to the building. In such a case, as the relationship
between axial force and deformation of the spring, the linear stiffness is defined only in compression side and zero

stiffness in the tension side as shown in Figure 3-4-2, assuming that the building detaches from the ground.
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3.4.2 Air spring

Reference:

1) Marin Presthus, “Derivation of Air Spring Model Parameters for Train Simulation”, Master of Science
Programme, Department of Applied Physics and Mechanical Engineering, Luled University of Technology,
Sweden, 2002

L

l)ﬂl]l]

Air bag
Vi pe Ae

Surge pipe
m A, L

Reservoir
Vi pr

Figure 3-4-3 Air spring (V : volume, p : relative pressure, A': area)

An effective area A, is introduced to express the volume change of air bag AV, as

AV, =Az (3-4-1)
When the initial pressure of air spring is p, , after the deflection, the pressure will change as

P, = P +Ap,  forair bag (3-4-2a)

P, =P, +Ap,  for reservoir (3-4-2b)
The volume will also change as

V, =V,, —ZA +Z,A for air bag (3-4-3a)

V, =V, —-Z.A for reservoir (3-4-3b)

where
Z, :the movement of air mass through orifice

A, :area of surge pipe

The pressure and the volume of the isentropic process can be described by
P, 'Vln =P, 'Vzn (3-4-4)

where
p,, V;: initial pressure and volume

P,, V, : final pressure and volume
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N : ratio of specific heat = 1.4 for Air
Applying the above equation to the air bag

(P +AP, ) (Voo —ZA +Z,A)" = Py -V (3-4-5a)

(Po+Ap,)- £1+Mj =p, (3-4-5b)

b0

by using Taylor expansion (1-+ X)rI ~1+nx (x<1)

[1+ﬂj-[1+ n(_zp‘*”ﬁ)]:l (3-4-5¢)
pO b0
Assuming [Apb j{—zA} +ZA j ~0
0 VbO
Ap, _ n(zA -zA) a450)
Po Vio
Using the same procedure for the reservoir
(Po+4p, ) (Vo= 2,A )" = Py Vi (3-4-62)
AP ~ nz, A (3-4-6b)
pO VrO

From the Bernoulli equation, the difference of the pressure between the left and right of the pipe speeds up a

portion of gas through the orifice. The force balance in the pipe is given by
A (Ap, -4p,)=C.2” (3-4-7a)

where
[ : viscous damping parameter determined by experiment

Substituting Eq. (3-4-5d) and (3-4-6b),

ZA& B ZSA§ ZSAS 5 B
p &n( - j =Gz, (3-4-7b)
° Vbo VrO
NP, AA (Z_VbOAs (L_FLJZ ch 7 P (3-4-7¢)
Voo A Ve Voo
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The force balance for the piston can be expressed as i .

I:Z = A% ( pb - patm) (3-4-8) Patm

where

Patm - atmospheric pressure

Air bag
Substituting Eq. (3-4-2a), Vi po Ae

I:z =(pO+Apb_ patm)Aa
:Apbp\e"—(po_ patm)p\e

:M per"*'(po_ patm)Ae

_MRAT (A _ 4
- Vbo (Z AEZSJ_F(pO patm)p\e (349)

From Eq. (3-4-7c)

npoAs'% (Z _i(vbo +Vr0 J ZSJ -Cz2” (3-4-10)
Vbo A

np,A° [z— A ZSJZ%C . (3-4-11)

2
= :npo'% i[iz_izsj_,_(po_patm)& (3-4-12)

K ZMRAA _ MRAT Vg Vi _ NRAT
VbO VbO +Vr0 VbO VbO VbO +Vr0

A

\ Introducing a new variable Yy = e} Z,

Y . AY
Kv(z—y):i%[%J C,y’=C,-y’, Cﬁ:l%[%} C, (3-4-13)

: 1
F = KV(ZZ—Y}(IOO— Pam ) A =K, (2-Y)+ Kv(z—l]ﬂ(po— Pun) A (3-4-14)

Therefore F,
K,(z=y)=C,-y” (3-4-15) l

. § E
Fz :Kv(z_y)+KeZ+(p0_patm)Ae (3'4'16) ‘ § Cﬁ Ty
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Incremental form of equation is

Fz(n+1) =K, (Z(n+l) - y(n+1))+ Kez(n+1)
Zinny = Loy +AL-2(1,,)

y(n+1) = y(n) +At- y(tml)

Then

B
y(n+1) - y(n)
Cﬂ ( At = Kv (Z(n+1) - Y(n+1))

The solution of Eq. (3-4-18) is obtained by solving the following equation:

At

Its derivative regarding Y, is

! ﬂcﬂ y(n+l) _y(n) ﬁ71
f (y(n+1)): At At + Kv

_ B
f (Yo ) =C; (Mj K, (2 = Vo) =0

A Newton-Raphson method is applied to solve the nonlinear equation f (y(nﬂ)) =0

new _ old f (y(n+1))
y(n+1) y(n+l) f ,( y(n+1))

where the prime  f ‘(y(n+1)) denotes derivative with respectto Y.y,

) g
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3.4.3 Base plate

[ ]

Figure 3-4-4 Hysteresis model of the base plate

The relationship between the moment at the bottom of the steel column, M, and the rotation angle of the base plate,
R, is given as a rotational spring. The hysteresis model of the M-R relationship takes into account plastic

deformation due to anchor bolt pullout and tensile yielding.

3.4.4 Pendulum element

mg

Figure 3-4-5 Pendulum element

From the equilibrium condition of the moment force
ml?0 +mglsind =0 (3-4-22)

Setting y =16, sin@~6
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mly+mgld=0 > mly+mgy=0 > my+($jy:0 > y+[%jy:0 (3-4-23)

Therefore, the natural period of the pendulum element is

T:27z\/I
g
mg

It means that the pendulum element is equivalent to the element with the horizontal stiffness, k, = I_ :

my+($jy:o > myky=0, k,="9

Furthermore, the horizontal stiffness of the member with the initial tensile force, T, can be interpreted as k,, = —

even in the static condition.

y ﬂTsinHzTHz[ljy
—>\ |
L
T

Figure 3-4-5 Pendulum element

Therefore, the pendulum element can be interpreted as a line element with the axial stiffness, K, and the

v !

T
horizontal stiffness, K, = I_ ,where T is calculated by the gravity force.
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3.5 Base Isolation

The element model of base isolation consists of shear springs arranged in x-y plane changing its direction with
equal angle interval as shown in Figure 3-5-1. This model is called MSS (Multi-Shear Spring) model developed by
Wada et al.

— AT - w
s S R
l [

Figure 3-5-1 Element model of base isolation

a) Nonlinear shear spring
The hysteresis model of each nonlinear shear spring is defined as a bi-linear model as shown in Figure 3-5-2. The

force and displacement vectors of i-th shear spring are expressed as,

Qix| |cOSH, (3:5.1)
9., |sing, i

uX
u, =[cosd, siné, ]{u } (3-5-2)

y

From the relationship, q; = K;U,, the constitutive equation of i-th shear spring is,

ix cos o, _ u, ) 0.sind. |[u,
d. =k| . "|coso, sing, _| o a s ,23|n ! (3-5-3)
iy sin g, u, cosé, sin 6, sin” g, uy

G
fy ky qi,y q
//' 14 qix
) Ko o, '
LU UI > X
y

Figure 3-5-2 Hysteresis model of the shear spring
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From the sum of all nonlinear shear springs in the element, the constitutive equation of the base isolation element

Qx N cos’@,  cos@ sing, |||u,
= 2K | Lo 3-5-4
{Qy} (.Z_ll 'Losé’i sing,  sin?é, D{uy} (3-5-4)

where, N is the number of shear springs in an element. In STERA 3D, N=6 is selected.

is,

First and second stiffness
We assume that all nonlinear shear springs in an element have the same stiffness and strength. The initial stiffness

of the base isolation element, K, is obtained from Equation (3-5-4) by substituting u, =1,u, =0.

N
K, = [z cos” 0, jko (3-5-5)
i=1

Therefore, the initial stiffness of each shear spring is,

K
k, = N—O (3-5-6)
> cos? 6,
i=1
The same relationship is established for the second stiffness after yielding,
K y
ky = (3-5-7)
> cos® 6,
i=1

where, Ky and ky are the second stiffness after yielding for the base isolation element and the nonlinear shear

spring, respectively.

Yield shear force
The yield shear force of the base isolation element, Qy , Is obtained assuming that all the nonlinear shear springs
reach their yielding points except the spring perpendicular to the loading direction, and the increase of the force

after yielding is negligible (Figure 3-5-3). That is,

Q, = (ikos 0, |j f, (3-5-8)

Therefore, the yield shear force of each shear spring is,

f, = NL (3-5-9)

> |cos o]

i=1
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/o
/
Qy |:> Hi > fy

~;
\

f
Figure 3-5-3 Assumption of yield shear force

y

212



Appendix 3.5:

A-1. Hysteresis of LRB (Lead Rubber Bearing)

LRB (Lead Rubber Bearing) is composed by rubber layers, steel plates and a lead plug core.

Lead Plug

Matural Rubber

Reinforcing

" Steel Plate
s

_Cover
Rubber

Flange

Figure Al-1. Lead Rubber Bearing (from Bridgestone Catalog)

1) Bi-Linear Model

The bi-linear hysteresis of LRB is defined as a combination of an elastic model and elasto-plastic model as shown
Figure A1-2.

ELASTIC PLASTIC ELASTO — PLASTIC
79K
A A A T '1 h
F
QalT :
1 : Kl
Qo - Kr - ' : Kp - ) - Keq -
Dy DY Dy
ﬂ ﬂ Qq
RUBBER LEAD v
Figure Al-2. Bi-linear model
The elastic stiffness, Ky, from the rubber is calculated as,
A
K, =G, r (Al1-1)
H

r
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where Gy is the shear modulus of the rubber, A, is the cross section area of the rubber and H; is the total height of the
rubber.

The elastic stiffness, Ky, from the lead plug is calculated as,

K =G Al (A1-2)
P :
HP

where Gy is the shear modulus of lead, Ay is the cross section area of lead plug and Hj is the total height of the plug.

The initial elastic stiffness, K1, and the secondary stiffness, Kz, of the bi-linear model are then obtained as,
K, =K, +K,
K,=K

The yielding deformation, Dy, is determined from the characteristics of the lead plug. The yielding force, Fy, is

(A1-3)

r

calculated as,

F, = (Kr T Kp)Dy (Al-4)

2) Modified Bi-linear Model

Hysteresis of a lead rubber bearing has a characteristic of stiffness degrading according to the strain level as shown
in Figure A1-3.

Force, F Skelton curve

ey

* Deformation, &

Figure A1-3. Hysteresis of a lead rubber bearing

The secondary stiffness of a lead rubber bearing, Kg, is expressed as,
Kq(7)=Cus (MK, +K,) (AL-5)

where y is a strain ratio (¥ =6 /H,) and C, (7) is a modification factor of the secondary stiffness, which

takes into consideration the strain dependency. Also, the intercept force is defined as,
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Qd (}/) = CQd (7)O-p Ap (Al'6)

where CQd (y/) is a modification factor of the yielding shear force and &, is the yielding shear stress of lead. The

force is then expressed by:

F(r)=Ky(»)5+Q,(») (A1-7)

Ku

Figure A1-4 Hysteresis loop model of lead rubber bearing

The modification factors, C,, (}/) and C (}/) are represented by the following formulas under 15 degrees

Celsius.
0.779y % | 7<0.25
Cwl¥)=1 »°® | 025<y<10 (A1-8)
y o, 10<y<25
2.036y%* | y<01
Coe (¥)=11.106y"** , 0.1<y<0.5 (A1-9)
1 : 05<y
Crd (7) CQd(y):
6 1.2
5 1
4 0.8
3 0.6
2 0.4
1 0.2
0 Y o y
0 1 2 3 0 1 2 3

Figure A1-5. Modification factors
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Under a different temperature, t, the secondary stiffness and the yielding shear force are to be corrected by the

following formulas:

K, ()= K, (t, )exp(-0.00271(t - t, )) (A1-10)
Q, (t)=Q, (t, )exp(-0.00879(t - t, ) (A1-11)

where  to=15 degree Celsius.

The primary stiffness of the lead rubber bearing, Ky, in Figure A1-4 is determined from the secondary stiffness, Kq,
as,
K, =8K, (A1-12)

where 10< 5 <15.
Following the suggestion in the manual of CANNY (K. Li, 2004), the hysteresis rules are:

a) Elastic range
Under the strain level less than vy, the hysteresis is assumed to be linear with the secant stiffness at the strain, ve,
that is:
Ko=F. /7, (A1-13)
Fo=Ky(7)d, +Qu(r.) 6. =7.H, (A1-14)
The value, y, =0.01 ,isadopted in STERA3D.
b) Loading on the skeleton curve after elastic range
Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at
the next step:
K=dF(y)/dy (A1-15)

Reference:

Response Control and Seismic Isolation of Buildings, Edited by Masahiko Higashino and Shin Okamoto, SPON
PRESS, October 17, 2006.

Canny Technical Manual, Kangning Li, August 2004

216



2) Consideration of strength reduction by dissipated energy

Reference

1) Masanori liba, et.al., “Research on Characteristics of Isolators and Dampers under Multi-cyclic Earthquake Motions
and Effects on Response of Seismically Isolated Buildings”, Building Research Institute, National Research and
Development Agency, Building Research Data, No. 170, April 2016 (in Japanese).

2) Haruyuki Kitamura and Miyuki Omiya, “Design method for long period ground motion - Points to note when
dealing with long-period ground motion”, The Kenchiku Gijyutsu, No. 815, pp.116-125, 2017.12 (in Japanese)

From Reference 1), the yield shear stress of lead plug, 7, is expressed as
= (I-(T/T)" ], e =0.4+0.25(T/T,) (A1-16)

Where,
7, : Design value of the yield shear stress of lead plug = 15.0 (N/mm?)

T : Average temperature of lead plug
T, : Melting point of lead plug = 327.5 (°C)
For example, when T =20 (°C), 7 is calculated to be 10.3 (N/mm?).

Reference 2) suggested another formula as

Qi '(7)=1Qy(7) (A1-17)

1 =-0.06+1.25exp| ——— (A1-18)
360 V,,

where
Q, () Intercept force without reduction
A - Reduction factor
pr: Dissipated energy

\Y

b= % D,,’h,, : Volume of lead plug

hy, = Nt, +(n—1)t, : Height of lead plug

N : number of rubber layer, t, : thickness of rubber layer, t.: thickness of steel plate

Also, the following formula is sometimes used

8.33 1 W
=) _0.06+1.25exp| —f (D, |)——2 A1-19
2 7.97{ p( (P ) 350 Vs, ]} (ALE9)

where
f (pr ) =0.16D,,"* : Correction value by the diameter of the lead plug, D, (mm)
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STERA_3D adopts Equation (A1-19). The reduction factor g is plotted as a function of energy dissipation as

follows.
14
12
-1
W 1
ad
P 08
E 0.6
{BE 04
0.2
0
0 100 200 300 400 500 600
Wﬂllvﬂ) (N/n"nz)
Figure A1-6. Strength reduction factor by energy dissipation
Example)
Bridgestone Product: LH060G4 C
Diameter (mm) 600
Lead plug diameter (mm) 100
Effective area (x10°mm?) 2749
Thickness of one rubber layer (mm) 4
Number of rubber layers 50
Total rubber thickness (mm) 200
Total height (mm) 407.9
Shear modulus of rubber Gr (N/mm?) 0.385
Apparent shear modulus of lead ap (N/mm?) 0.583
Yield shear stress of lead sy (N/mm?) 7.967

(shear properties at shear strain = 100%)

Initial stiffness K1 (x103kN/m)

7.18 (=13xK2)

Post yield stiffness K2 (x10°kN/m) 0.552"V
Characteristic strength Qd (kKN) 62.6™
*1)

Shear stiffness of laminated rubber Kr = Gr Ar / H (x10%kN/m) 0.529
Additional shear stiffness by lead plug : Kp = ap Ap /H (x10°kN/m) 0.023
Total stiffness K2 = Kr+Kp (x10%kN/m) 0.552
Yield strength of lead Qd = sy Ap (kN) 62.573
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-30

(a) Bi-linear

(b) Modified bi-linear
Figure A1-7. Comparison of hysteresis loops
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A-2. Hysteresis of HDRB (High Damping Rubber Bearing)

HDRB (High Damping Rubber Bearing) is composed by rubber layers and steel plates. By adding special ingredient

in the natural rubber, rubber itself demonstrates damping characteristics.

High Damping Rubber

.. - Reinforcing
: Eteel Plate

- Cover
. Rubber

gl 4
= Flange

Figure A2-1. High Damping Rubber Bearing (from Bridgestone Catalog)

1) Modified Bi-linear Model

The hysteresis of HRB is defined as a modified bilinear model as shown Figure A2-2.

Figure A2-2. Bi-linear model

The equivalent stiffness, K__, is calculated as,

eq’

Keg (7)=Gq (7)x AT H, (A2-1)
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where  y:shearstrain (y =0/H,)
A : cross section area of the rubber
H; : total height of the rubber.

G (7/) : Equivalent shear modulus

G(r)=ag +ay+ay* +ay® +-+a,y" (A2-2)
h, () : Equivalent damping factor
N ()= Bo+ By + By’ + By ++-+ By (A2-3)
u(;/) - Intercept force ratio
U(y) =ty + py + 17" + g5y + -+ 7" (A2-4)
Rubber code Coefficient of each order
(shear strain) 4th 3rd 2nd 1st 0
X0.3R G, (7) (N/mm?) | 00255 |-0.2213 |0.7283 |-1.1028 | 0.8703
0lsy=301y (») 0005 |0015 |-0006 |0.166
u(y) -0.0087 |0.0262 | -0.0105 |0.272
X045 G, (y) (Nmm? | 0054 |-0416 | 1192 -1583 | 1.145
01<y <27 | h,(y) -0.007 | 0.02 0009 | 0236
u(y) -0.0132 | 0.0401 | -0019 | 0.4001
X0.6R G, (7) (NNmm? |0.1364 |-1.016 | 2.903 -3.878 | 2.855 X0.62
01<y<2,7 | h,(y) 0.02902 | -0.1804 |0.2364 | 0.915 X0.24
u(y) 003421 |-0.2083 |02711 |09028 | X0.408

Hysteresis of a high damping rubber bearing has a characteristic of stiffness degrading according to the strain level

as shown in Figure A2-3.

Force, F Skelton curve

>
P

A

Figure A2-3. Hysteresis of a high damping rubber bearing

221

Deformation, &



Each shear properties shall be determined by the following equations:

The initial stiffness
K, (7)=10xK (7) (A2-5)
The secondary stiffhess

K, (7)=(1-u(r))x K (7) (A2-6)

The intercept force

Qi (7)=u(»)xQu (7). Qu(r)=Ky(»)H» (A2-7)

Under the loading on the skeleton curve after elastic range, tangent stiffness is used to estimate the response at the

next step:
K =dQ(y)/dy (A2-8)
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2) Consideration of strength reduction by dissipated energy

Reference

3) Takuya Nishimura et al., “Practical Response Evaluation Method for Seismic Isolation System against Long Period
Earthquake Motions - Part2- High-Damping Rubber Bearing and Lead Damper”, AlJ Annual Convention,
Architectural Institute of Japan, 2013, pp.767-768 (in Japanese)

In the above reference, the reduction factors of equivalent stiffness and equivalent damping are proposed as,

C, =-0.0073-(EN)+1.0 (E/NV <10.0N/mm?)

A2-9
C, =-0.0025-(E/V)+0.952 (E/V >10.0N/mm?) (A29)

C, =-0.0039-(ENV)+1.0 (EN <10.0N/mm?)

A2-10
C, =-0.0016-(E/V)+0.977 (E/V >10.0N/mm?) (AZ10)

where  E: dissipated energy, V: volume of rubber

: ;o
LH NERRREREEE llllllllll-:llllllllll
'g NNEENNNENE : INININE
= . IEEEREEEEE IIIIIIIIIIﬂEIIIIIIIIII
E I:Ig EIIIIIIIIII III‘=IIIIIIIIII
DSS EIIIIIIIIII IIIIIIIIII‘:IIIIII
0.2 . -
0 3 10 13 20 25 a0

EfV (Nfmm? |

To consider the strength reduction by energy dissipation, STERA_3D modifies the equivalent shear modulus and the

equivalent damping factor as,

Ge'(7)=CyGey (7) (A2-11)
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A-3. Hysteresis of Lead Damper

Reference

1) Takuya Nishimura et al., “Experimental Study on Multi-cyclic Characteristics of Devices for Seismic Isolation
against Long Period Earthquake Motions: Part 7- Lead Damper”, AlJ Annual Convention, Architectural Institute of
Japan, 2011, pp.667-668 (in Japanese)

2) Takuya Nishimura et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic
Isolation against Long Period Earthquake Motions: Part 5-Modeling of Lead Damper and Seismic Response
Analyses”, AlJ Annual Convention, Architectural Institute of Japan, 2012.9, pp.383-384 (in Japanese)

/7 Cast Lead

Steel Flange Plate

Figure A3-1. Lead damper

1.2

@ —— (=100MiN e 4=200MM =i 4=400MM

Strength reduction factor R

0 2000 4000 6000 8000 10000

Dissipated energy E (kNm)
Figure A3-2. Relationship between dissipated energy and strength reduction factor

In the above references, from the cyclic loading test of a lead damper with the different horizontal displacement

amplitudes, three line graphs are obtained for the relationship between the dissipated hysteresis energy and the

horizontal strength reduction ratio. The breaking points of the line are proposed as follows to match the test results.
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a) The first point of strength reduction, (Rl, El)
R, =1.0
E, =-37+2322/d| (0.1<|d|[<0.4), 195(d|<0.1)892 (d[>0.4) (kNm) (A3-1)

b) The second point of strength reduction, (RZ, E2)
R, =0.62+0.60/d| (0.1<[d|[<0.4), 0.680 (d|<0.1) 0.860 (d[>0.4)
E, =2,205 (kNm) (A3-2)

c) The third point of strength reduction, (R, E;)
R, =0.375+0.525d| (0.1<|d|<0.4), 0.428(d]<0.1) 0.585 (d[>0.4)
E, =8,000 (kNm) (A3-3)

d) The fourth point of strength reduction, (RA, E4)
R,=0
E, = 9683-2060/d| (0.15<|d|<0.4), 9854 (d[<0.15) 8859 (d[>0.4) (kNm)  (A3-4)

The hysteresis of the lead damper is defined as a bilinear model. To consider the strength reduction by energy
dissipation, STERA_3D adopts the line of d = 0.2 (m) for random amplitude. The strength of a lead damper, Q, ,

is then expressed as,

Qd =R Qdo (A3-5)

where, R : Strength reduction factor
Qg : Initial strength of a lead damper

Force, F
Skelton curve

Deformation, &
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A-4. Hysteresis of Elastic Sliding Bearing

Reference

1) Shigeo Minewaki et al., “Study on Multi-cyclic Modeling of Devices and Response Evaluation for Seismic Isolation
against Long Period Earthquake Motions : Part 2-Modeling of Low Friction Bearing and Viscous Damper”, AlJ
Annual Convention, Architectural Institute of Japan, 2012, pp.377-378 (in Japanese)

Laminated rubber Flange plate

Base plate

Sliding material

Sliding plate Connective steel plate

Figure A4-1. Elastic Sliding Bearing

In the above reference, the dynamic friction coefficient changes according to the temperature of the sliding plate as,
1y =—7.5x107°-T +0.0145 (A4-1)
The change of the friction coefficient is expressed as a function of the increment of temperature as

Au =0.03-(AT +1)°® -0.03 (A4-2)

On the other hand, the increment of temperature has the following relationship with the dissipated energy E,

(KNmm),
AT =0.00019-E,*° (A4-3)
Therefore, the dynamic friction coefficient is obtained from the dissipated energy,

p = p1o(T )+ Au(E,) (A4-4)

The hysteresis of the elastic sliding bearing is defined as a bilinear model. In STERA_3D, the initial friction
coefficient is temporary assumed as 1, = 0.029 from the catalog of a manufacture. The strength reduction by

energy dissipation will be expressed as,

Qy = (/Uo + A:U(Ed )) (Qdo/ﬂo) (A4-5)

where, Q,,: Initial strength of an elastic sliding bearing
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A-5. Hysteresis of Bouc-Wen Model

B=0.5, v=0.5 p=0.1, v=0.9

Reference

1) Terje Haukaas and Armen Der Kiureghian, “Finite Element Reliability and Sensitivity Methods for
Performance-Based Earthquake Engineering”, PEER 2003/14, APRIL 2004

2) Wen, Y.-K. (1976) “Method for random vibration of hysteretic systems." Journal of Engineering
Mechanics Division, 102(EM2), 249-263.

3) Baber, T. T. and Noori, M. N. (1985). “Random vibration of degrading, pinching systems." Journal
of Engineering Mechanics, 111(8), 1010-1026.

a) Basic formulation

The basic formula of Bouc-Wen model is

f=ak, x+{1-a)k, 2 (A5-1)

. . N-1 . N
s Ax—{ﬂ|x||z| z+y X }v
n

(A5-2)

where, £, y,and Nare parameters that control the shape of the hysteresis loop, while A, v,and 7

are variables that control the material degradation.

From the yield deformation, 5y, the parameters [, y are expressed as,

ﬂ:ﬂo/éy and 7:70/5:/\‘ (A5-3)

The model can be written as,

s A-|z|" {Bsgn(xz)+ y}v o 020X

- n ox ot A4
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This leads to the following expression for the continuum tangent

of

0z
k:&:ak0 -|—(1—05)k0&:0¢kO +(1-a)k,

A—|z|N {Bsgn(xz)+y}v

n

(A5-5)

The evolution of material degradation is governed by the following choice of equations (Baber and

Noori 1985):

A=A -6,e, v=1+6e n=1+0e

where eis defined by the rate equation

e=(1-a)k, z X

and Ay,0,,0,,and &, are user-defined parameters.

b) Incremental form for numerical analysis

Incremental form of Eq.(A5-1) is
f(n+1) =a k0 X(n+l) + (1—0{) kO Z(n+1)
By a backward Euler solution,

Zingy =Zny t At z(tn+l)
Xy = Xy + At X(t,.1)

Applied to Eq. (A5-4),

N X - X
(n+1) (n)
A(n+1) - ‘Z(ml) {ﬁsgn( At Z(nsay j"' 7/} Vin)
Xins) ~ Xy
Z =27, +At
(n+1) (n) At
77(n+1)
where
Aniy =P —0x80yr Vi =1+0,800y0 My =146,€4.)
X —X
— (n+1) (n)
€ty = &y + AtL— ) Ky 7.0 22—
At
=€mn t (1_ 0‘) K Z(n11) (X(n+l) - X(n))
Since

At

X — X
(n+1) (n) o
Sgn(— Z(n+1)] = 59”{(X(n+1) = X(ny )Z(n+1) }
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(A5-6)

(A5-7)

(A5-8)

(A5-9)

(A5-10)

(A5-11)

(A5-12)

(A5-13)



(n+1)

N
k4 Vins)

O = A(n+1) - ‘Z(n+l)

Y= ﬂsgn{(x(nﬂ) ~ Xn) )Z(”ﬂ) }+ Y

f (Z<n+1)): Zay = Zn) — i(X(n+1> - X(n)): 0

(A5-14)

(A5-15)

(A5-16)

A Newton-Raphson method is applied to solve the nonlinear equation f (Z(M) ) =0,

new old f (Z(n+1) )

Ziny = Znay) — (7

(n+1)

where the prime f '(Z(M)) denotes derivative with

respectto ., ,,

(A5-17)

A

o _.-.u'd
=in+l) =in+l}

Evaluation of the function derivatives is summarized below.

Original f (Z(n+1))

Function derivatives f '(Z(M))

X —X
(n+1) (n)
e(n+1) = e(n) + At(l_ a) I(0 Z(n+l) .

X —X
f (n+1) (n)
€y = AlL— )k, —02 70

At At
A(n+1) = Ao - 5Ae(n+l) Al(n+l) = _5Ae'(n+l)
Vi) =1406,84.) Vi = 0,€ .
Nesy =1+ 6,800 M 0s1) = 9,€ (i)
N N N N-1 q )‘P
D = Ay _|Z(n+1) Y Vi D'= Ay~ ‘Z(ml) SO Z () /T V()
N
- ‘Z(m—l) Yv (n+1)
) Oy —On'
_ _ - _ 1 - (n+1) (n+1)
f(z(n+1))— L) ~ Z(n) (X(n+1) X(n>) f (Z(n+1))_1_ 2 (X(n+1) - X(n))
T (n+1) 17" (n+1)

(A5-18)
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The procedure can now be summarized as follows:

new old

1. While (|22, - 205,

> tol )

(a) Evaluate function

€ =€y T (1_ a) kg Z(n+1) (X(n+1) - X(n))
Aniy =P —0a80yr Vi =140,800y0 Mgy =146,€4)

Y= ﬂsgn{(x(nﬂ) ~ X )Z(”+1) }+ Y

N

D= A(n+1) _‘Z(nﬂ) kg Vins)
o

f (Z(n+l)): Zinsyy =Ly — (X(n+1) - X(n)) (A5-19)
(n+1)

(b) Evaluate function derivatives

Xni1) ~ X(n)

€ = At(1—a) k, At

Vi = 0,8 (g
77I(n+1) = 5nel(n+1)

N
O'= A(n+1)_N ‘Z(m—l) Yv (n+1)

N-1
Sgn(z(nﬁ-l) )LP Vinsy — ‘ Z(ns1)

f I(Z(nﬂ)): 1— (D'77(n+1)2_ @ 77'(n+1) (
7 (n+1)

(c) Obtain trial value in the Newton-Raphson scheme

new f (Z(n+l) )

Xns1) X(n)) (A5-20)

Lty = Zinan) — £ (A5-21)
Z(n+l)
(d) Update z,,,,
Id
Z(0n+l) = Z(n+l) and Z(n+1) = Z(n:ﬁ) (A5‘22)
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¢) Tangent stiffness
The tangent stiffness is necessary to compute the nonlinear structural analysis.

From the incremental forms:

fy =a Ko X +(1_05) Ko Z(noay

N X — X
(n+1) (n)
{ﬁ Sgn[m Z(nsa) j"‘ 7} V(n+1)
Xy ~ Xy

11 At

A(n+1) - ‘Z(ml)

Z(hin) = Zny + At

The tangent stiffness is calculated as (T. Haukaas and A. D. Kiureghian, 2004);

af +1 az +1
mmnzgiLl:ako+a—a)M D (A5-23)
(n+1) X(n+1)
oz b
() _ Dy (A5-24)
ax(ml) b5

where

W = BSIM(X11) = X 2oy 1+ 7

N
k4 Vs

O = A(n+1) _‘Z(n+1)

b, = (1_a) Ko Z(n)
b, = (1_ a) k0 (X(n+1) - X(n))

b3 _ (X(n+1) - X(n))

Mn

N ()] ()
Yo,b ——— (X(n+1) ~ X )5nb1 to

(n+1) 77(n+l)

b4 = _b35Ab1 - b3‘z(n+l)

- sgn(Z(M) )\}/ V()

N (0))
Yo,b, +—— (X<n+1) = Xn) )5nbz

(n+1)

by =1+b,5,b, +byN|z,.y

+ bs‘z(n+1)
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A-6. Hysteresis of FPB (Friction Pendulum Bearing)

1) TPB (Triple Friction Pendulum Bearing)

Rarba Rai By
W 1 -
|

d, =
1
\I_.-_ d‘ h’ h4
¢.
AR 1
) 1

— H ".I wepyee
R1,u,J&.u=J \ | d

| — Rigid Slider
(- Slide Plates

Reference

1) Daniel M. Fenz, Michael C. Constantinou, “Spherical sliding isolation bearings with adaptive behavior:
Theory”, Earthquake Engineering and Structural Dynamics, 2—8: 37: 163-183

Effective radius of each surface
Reffl:Ri_hl' Reff2=R2_h2' ReﬁSZRS_hS' Reff4=R4_h4

Friction force of each surface

Feo= W, Fep =W, Fes =W, Fey =W
Stiffness after sliding of each surface
W W W W
Kfl:R_’ Kip=5—, Kf3:R_’ Kf4:R_
eff 1 eff 2 eff 3 eff 4

where,

R; : the radius of curvature of the i-th sliding surface,

h. : the radial distance between the i-th sliding surface and the pivot point of the articulated slider
d, : the displacement capacity to the displacement restrainer on the i-th sliding surface,

M, - the coefficient of friction of the i-th sliding surface,

W : the vertical load.
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Restoring force of each surface is the bilinear model with the capacity deformation.

Horizontal Force

Diisplacement on Surfsce iy
1 !

FBDI.

FBD Il

FBD III.

FBD IV.

The TPB can be modeled as a model of four springs with bilinear restoring forces connected in

series.
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In small incremental deformation du, (i =1,---,4), if the instantaneous stiffness of each spring K, is used,

Kfl KfZ Kf3 Kf4
BVAVAVAVANISIVAVAVAVANRPIVAVAVAYANEPNEVAVAVAVA N T
du, du, du, du,

The total incremental deformation du of the TPB is the sum of the deformation of each spring

4
du=>"du, =du, +du, +du, +du, =dF

{ 1 1 1 1 }
* + * + * + *
i=1l Kfl Kf2 Kf3 Kf4

Therefore, the deformation of each spring U; is obtained from the total deformation U as

dF =K'du, K’ =

1

{ 1 1 1 1 J
* + * + * + *
Kfl Kf2 KfS Kf4

The conditions of parameters are:

1)

2)

3)

4)

5)

Effective radii of inner surfaces 2 and 3 are smaller than those of outer surfaces 1 and 4
Reffl = Reff4 > Reffz = Reﬂ3
Inner surfaces 2 and 3 slide before outer surfaces 1 and 4

Hy =y <y < Hy

For the outer surface 1 to slip before the inner capacity deformation d, is reached, i.e., the force on face 1 is
less than the force on face 2 at the capacity deformation, then
W W
Fri < d,+F, > uW< d, + W > d2>(lu”l_1u2)Reff2
eff 2 eff 2
For the outer surface 4 to slip before the inner capacity deformation d, is reached, i.e., the force on face 4 is

less than the force on face 3 at the capacity deformation, then

W
Fis <R_d3 +F, > dy> (/14 _/Js) Retra
eff 3
For face 4, which has the greatest frictional force, to slip before the capacity deformation of face 1 is reached

w
Fia <R_d1+ Fo > d >(y4 _M)Rem

eff 1
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2) Single Friction Pendulum Bearing

PSR Edite “In case of a single sliding surface, the force-

FPB ( Friction Pendulum Bearing) Hysteresis Model deformation of FPB is

dF =K'du, K" =K},
& Single
" Double
 Triple m,;; »
- Parameters of each sliding surface
Surface 1 Surface 23 Surface 4
u : friction coefficient [O | 0 I 0
R: radius (mm) IG |0 IU
h : height (mm) |0 |0 |o
d : disp. capacity (mm) Io |u In

OK |

3) Double Friction Pendulum Bearing

R R GRS “ | In case of double sliding surfaces, the force-

‘ deformation of FPB is
FPB ( Friction Pendulum Bearing) Hysteresis Model

* * 1
_ R4, pd dF=Kdu, K =———
« Slngle _.\._ — — - 1 1
& Doubl | -y +
oo . n K KD,
_ b
" Triple RL, pl
- Parameters of each sliding surface
Surface 1 Surface 22 Surface 4
u : friction coefficient [0 | 0 lO
R:radius (mm) Io |o ]o
h: height (mm) IO | 0 l 0
d : disp. capacity (mm) Ic |o Io

OK |
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Example)

Property Editor X

FPB ( Friction Pendulum Bearing) Hysteresis Model

R4, pd4 R3, p3 _d3_
" Single L
N da Ul Tha |4
" Double ‘A {*@{hl
77
(" Triple RL,pl RZ,p2 "4z

Parameters of each sliding surface —

Surface 1 Surface 23 Surface 4

u: friction coeflicient I 0.08 [0.02 ,0_03
R:radius (mm) |3952 |457 13962
h : height (mm) [ 14 I38 ]114
d : disp. capacity (mm) |514 |5‘1 I514

OK |

W =415.12 kN

Note) In STERA, the frictional bearing capacity is calculated from the initial vertical load and the coefficient of

friction. Note that the frictional capacity remains the same even if the axial force varies.

F (kN)

200

180

160

140

120

100

80

60

40

20

u (cm)
0 20 40 60 80 100 120 140
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-200

-300
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F u
A Fio=Fis 0
B Fi U= (44— 4y ) R o + (44— 145) Regs
C Fi u*k:/u4(Reff1+Reﬁ3)+(/ul_:uz)Reff2_lulReffl_lusRefm
w - R,
D Fon=5—d +Fyy Uy =U7 +d, | 14— _(:u4_:ul)(Reffl+Reﬁ4)
Reffl Reffl
W d d
E Fas=5— 0, +Fyy Ugrg =Ugey +| | 5+ 4y [—| 5+ 14 (Reff2+Reff4)
Reff4 Reff4 Reﬁl
F (kN)
300
200
u (cm)
-150 150



3.6 Masonry Wall

Figure 3-6-1 Element model for masonry wall

a) Nonlinear shear spring
Hysteresis model of the nonlinear shear spring is defined as the poly-linear slip model as shown in Figure 3-

6-2.

Figure 3-6-2 Hysteresis model of the nonlinear shear spring

The characteristic values, Q,Q,,Q,are obtained based on the formulation described in the reference

(Paulay and Priestley, 1992).

The procedure to obtain the shear strength is shown below:
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(1) Compression strength of masonry prism

/

Z/H /'t
.

Compression strength of diagonal strut is

R=Ztf', (3-6-1)
where,

f'm : Compression strength of the masonry prism

z : Width of the diagonal strut (Z = 0.25 d, d is diagonal length)

t : Thickness of wall

The compression strength of the masonry prism ( ') is determined by the following equation (Paulay and

Priestley, 1992),
LS (fltb+aflj )

fr. = : : (3-6-2)
" Uu(ftb+af cb)
j
o= 3-6-3
4.1h, ( )
where,
f'y Compressive strength of the brick
f'y ; Tensile strength of the brick (= 0.1 ')
f : Compressive strength of the mortar
j ; Mortar joint thickness
h, ; Height of masonry unit
U, : Stress non-uniformity coefficient (=1.5)
Another formula is proposed by Eurocode 6:
1 1 a 1 b
fro=k-(f'u)(f") (3-6-4)
where, K, «a, g constants provided by the table in Eurocode 6
The shear strength is then obtained as,
V,=Rcos@=Ztf' coséd (3-6-5)
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(2) Shear strength by sliding shear failure

R cosB
4 o
TqL
: /@ 5
R sinB el o
Oy
=2 cohesion
angle of internal friction
The maximum shear stress is obtained from the Mohr-Coulomb criterion:
T, =7, + MO, =T, +tango, (3-6-6)
where,
7o : Cohesive capacity of the mortar beds (=0.04 f',,) (Paulay and Priestly, 1992)

U : Sliding friction coefficient along the bed joint

41=0.654+0.000515f ", (Chen etal, 2003, f",(kg/cm?))

o, ; Compression stress (=W / A, = Rsind/A,)

The shear strength is

Vi =1 Ay :(To"‘ﬂ%jpw =ToA, + W

Substituting V, = Rcosd, W =Rsiné
where @ is an angle subtended by diagonal strut to horizontal plane

Rcosé =, A, + uRsin@

RcosO(1— utan )=z, A,

Rcos@ :&
1-putand

Therefore,
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(3) Characteristic values of nonlinear skeleton

The shear resistance, Q, , is calculated to be the minimum value between the shear strength by sliding shear

failure, V, and the shear strength of diagonal compression failure, V_, thatis,

Q, =min(V,,V,) (3-6-10)

The shear displacement at the maximum resistance, y,, is obtained as (Madan et al.,1997),

glm d m
=—T—" 3-6-11
"= cos0 ( )
where,
&' Compression strain at the maximum compression stress
(&', =0.0018, Hossein and Kabeyasawa, 2004)
Initial elastic stiffness is assumed as (Madan et al., 1997)
ko=2Q,/y, (3-6-12)
From Figure 3-6-2, the shear resistance at crack, Q. is obtained as,
Q, —ak
Q, =~ ¥y (3-6-13)
l-«
where, « is the stiffness ratio of the second stiffness and assumed to be 0.2.
Shear displacement at crack is then obtained as,
Ve = Qc /kO (3'6'14)

Shear resistance and displacement at the ultimate stage are assumed as (Hossein & Kabeyasawa, 2004)
Q, =0.3Q, (3-6-15)
7y =3.5(0.01h, —y,) (3-6-16)

where, h,, is the height of masonry wall.

References:

1) T. Pauley, M.J.N. Priestley, 1992, Seismic Design of Reinforced Concrete and Masonry building, JOHN
WILEY & SONS, INC.

2) Hossein Mostafaei, Toshimi Kabeyasawa, 2004, Effect of Infill Walls on the Seismic Response of
Reinforced Concrete Buildings Subjected to the 2003 Bam Earthquake Strong Motion : A Case Study of Bam
Telephone Centre, Bulletin Earthquake Research Institute, The university of Tokyo

3) A. Madan,A.M. Reinhorn, ,J. B. Mandar, R.E. Valles, 1997, Modeling of Masonry Infill Panels for
Structural Analysis, Journal of Structural Division, ASCE, Vol.114, No.8, pp.1827-1849

242



(4) Modification factors
STERA 3D provides modification factors for stiffness and shear strength in the option menu.

The stiffness modification factor, A, changes the stiffness while maintaining the shear strength in the

skeletal curve.

Q Q

Q( K T Q( 7 o { ;., ‘\)\ ________
0 o

-y'.' .:V_r -;VJ- ;Iv’ -;V'-' ;V_r Y .?

The strength modification factor, 77, changes the strength while maintaining the stiffness in the skeletal

curve.
0 0
o
Q 1'.'2';\ il ?'?QT \
L Y A aK,
Q / }FQ{ ________
ks ’?Q{ Ko
;VI. .:-V-. :'er .;V }"-' -:'V'- }"" .;V

b) Vertical springs

For the moment, the vertical springs of the element model in Figure 3-6-1 are assumed to be elastic springs.

N',=k,¢,, N,,=ke&,, (3-6-17)

k,=E,(l,)/2 (3-6-18)
where,

(= Modulus of elasticity of masonry prism (=550 ', , FEMA 356, 2000)

t : Thickness of masonry wall

I, Width of masonry wall
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3.7 Passive Damper

a) Hysteresis damper

Hysteresis damper is modeled as a shear spring as shown in Figure 3-7-1.

Figure 3-7-1 Element model for passive damper
Different types of hysteresis model are prepared for the force-deformation relationship of the spring.
(1) Bi-linear Model

kZ
= /X + 1_kZX

(2) Normal-trilinear Model
f=1f+f, f, f,
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(3) Degrading Tri-linear model

M 0
: kr:k/ﬂa, k=p y7 ﬂ_pm
| ' - 0,
R an ks:km//uﬁ’ km: an
(nem_pas)
(4) Bouc-Wen model
y y y
a=0.01 a=0.01 a=0.01

X X X

(8=05,7=05N =10) (8=057=05N=2) (#=01y=09N=2)

(5) Nonlinear Spring model

Figure 3-7-2 Hysteresis model of the shear spring
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b) Viscous damper

Viscous damper is modeled as a shear spring as shown in Figure 3-7-3.

—w—=H

Al ; A2 | |

A

Figure 3-7-3 Element model for passive damper

(1) Algorithm for oil damper devise

Figure 3-7-4 shows the Maxwell model with an elastic spring with stiffness, K, , and a dashpot with

damping coefficient, C.

Ka c —
F..’ u
o—/\/\/\/ 0O | o "

Node i Node j
Fk, Uk Fe, Uc
Figure 3-7-4 Maxwell model
Since the elastic spring and the dashpot are connected in a series,
Fo=F=F (3-7-1)

where, F, : force of the elastic spring

F. : force of the dashpot

C

F; : force between i-j nodes
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The force of the elastic spring, F_, is obtained as,
Fe = Kau, =K (U —u)
where, u, : relative displacement of the elastic spring
U, : relative displacement of the dashpot

uj; : relative displacement between i-j nodes

(3-7-2)

For an oil damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-5.

Fe

-

relief point

Q [--="7

Ci

Figure 3-7-5 Dashpot element
The force of the dashpot after the relief point is,
Fc = CZUC + Qc

Substituting Equations (3-7-2) and (3-7-3) into (3-7-1)
Kg (U —u.)=C,u, +Q,

L

(3-7-3)

(3-7-4)

When the time interval At is small enough, the velocity at time t can be expressed as,

0, (=20

AU, () = U (t) — U, (t — At)

Substituting above equations into Equation (3-7-4),

K (U (0 —u  (t - A1) - Q,
&+ Ky
At

Auc (t) =

The algorithm to obtain the force F; (t) from uj; (t) is as follows:
1) Evaluate Au,(t) from Equation (3-7-7)
2) Evaluate u(t) from Equation (3-7-6)
3) Evaluate F;(t) from Equation (3-7-2)
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Before the relief point of the dashpot, Equation (3-7-7) will be obtained by changing C, - C,, Q. =0

as
Au, () = by g) ~ue (=) (3-7-8)
L+ K,
At

When the velocity of the dashpot is over the negative relief point, Equation (3-7-7) will be obtained by
changing Q, —» —Q.,
K (U () —u, (t-A0)+ Q,

Au, (t) = (3-7-9)
C2
—=+ Ky
At
In case there is no elastic spring,
c —
FN, u
0 | o "
Node i j
Fec, U
Figure 3-7-6 Dashpot element without elastic spring
u; (t) =u.(t)
I:uj = Fc = Czuc +Qc
Au_(t) Au(t
0, (1) = 200 _ A% O
At At
Therefore,
Auij t)
F () =C, +Q, (3-7-10)
At
Before the relief point of the dashpot,
Ft)=C Au; () (3-7-11)
T At
When the velocity of the dashpot is over the negative relief point,
Auy (1)
Fij v =C, A—t -Q. (3-7-12)
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(2) Algorithm for viscous damper devise

Figure 3-7-7 shows the Maxwell model with an elastic spring with stiffness, K, , and a dashpot with

damping coefficient, C.

Ka C —

F..' u
O—/\/\/\/ O I 0 ij, Uij
Node i Node |

Fk, Uk Fc, U.

Figure 3-7-7 Maxwell model

Since the elastic spring and the dashpot are connected in a series,
Fo=F=F (3-7-13)
where, F, : force of the elastic spring
F, : force of the dashpot

F; : force between i-j nodes

The force of the elastic spring, F, , is obtained as,
Fie = Kguy = Kq (U —ue) (3-7-14)
where, u, : relative displacement of the elastic spring
U, : relative displacement of the dashpot

uj; : relative displacement between i-j nodes

For a viscous damper, the force-velocity relationship of the dashpot is defined as shown in Figure 3-7-8,

Fo o=
01 0
. $
Fc =C- (Uc)a

0.7

0.4

: o l:] .
Figure 3-7-8 Dashpot element
That is,
F. =Csgn(u, (t))]u. () (3:7-15)
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From Equations (3-7-13) and (3-7-14)
F ()
——+Uc(t)=uy () (3-7-16)
Kd

Taking time differential and substituting Equation (3-7-15) give

1a
F; (1) F; (1) .
Ii— + sgn(Fij (t){"c—q =1y (t) (3-7-17)

d

The numerical integration method, Runge-Kutta Method, can be used to solve the Equation (3-7-17).

In general, the solution of the differential equation, y(t) = f(y,t), is obtained by Runge-Kuttta Method as

follows:
Yo = Yn "‘é(ko +2k; + 2K, +kg) (3-7-18)

ko = f (Y, t,)At

k,=f(y, +ko /2,1, + At/ 2)At
k, = f(y, +k /2,t, + At/2)At
ks = f(y, +k,,t, + At)At

Equation (3-7-17) can be written as

1«
- . |7y )
Fy (0 =] (0 - san(F () c Kq (3-7-19)
Applying Runge-Kutta Method gives the following algorithm,

I:ij (tn+1) = I:ij (tn) + %(ko (tn) + 2k1 (tn) + 2k2 (tn) + k3 (tn )) (3'7'20)

1/«
J K At

1/«
IF; (tn)+k0/2q < nt
-~ d

‘Fij (tn)
C

Ko =| Uj (t) _Sgn(Fij (tn){

ky =| Uy (8, + At/ 2) —sgn(Fy (t,) + ko /2 -

Ky =| Uy (t, +At/2) —sgn(Fy (t,) + K, /2

Fy )+ kl/z\JU“
e Kt

C

/
, ‘Fij(tn)+k2‘ 1
ke =| Uy (t, +At) —sgn(F; (t,) + K, | ————1| K At
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In this algorithm, it is assumed as,
u; (t,)+ U; (t, + At)

Uy (t, +At/2) = ) (3-7-21)
In case there is no elastic spring,
c —
FN, u
o | o "
Node i j
Fec, U
Figure 3-7-9 Dashpot element without elastic spring
u; (t) =u,(t) (3-7-22)
F, = F. =Cson (0, ()|, () 729
) Au_(t)  Auy(t)
u, (t)=—=>2=— 3-7-24
()= = (6-7-24)
Therefore,
Auy () )| Ay, (O]
F.(t)=Csgn| — ! 3-7-25
a(t) g(At]AM (3:7:29)
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(3) Algorithm for viscoelastic damper (Kelvin-Voigt model) devise

Figure 3-7-10 shows the Voigt (or Kelvin-Voigt) model with an elastic spring with stiffness, K, and a

dashpot with damping coefficient, C. The stiffness of the connection is represented as K .

W
Ka c —
Q—/\/\/\/ o | o MY
Node i Node j
Fk, Uk Fec, Uc
Figure 3-7-10 Voigt (or Kelvin-Voigt) model
Since the elastic spring and the dashpot are connected in a series,
F=F=F (3-7-26)
where, F, : force of the connection spring
F. : force of the dashpot and spring
F; : force between i-j nodes
The force of the connection spring, F_, is obtained as,
Fe = Kquy = Kq (U —u;) (3-7-27)
where, u, : relative displacement of the connection spring
u, : relative displacement of the dashpot and spring

uj; : relative displacement between i-j nodes

Fe

-

relief point

Fs |---~

c )
.1 Uc

L

Figure 3-7-14 Bi-linear model
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The force of the dashpot and spring is,
F, =Ku,+C,u, +F, (3-7-28)

Substituting Equations (3-7-27) and (3-7-28) into (3-7-26)
Ky (U —u,) =Ku, +C,u, +F (3-7-29)

When the time interval At is small enough, the velocity at time t can be expressed as,

AU, (t)

0 () = 24t =
U, (t) AL (3-7-30)

Au, (t) =u, (t) —u, (t — At) (3-7-31)

Substituting above equations into Equation (3-7-29),

Kyu; = (Kqg +K)(Au (t) +u, (t-At))+C, AU g

S

AUL(t) = Ku; (t) - é Ky +K)u (t—At) - F, )
~2 (K, +K)
At

The algorithm to obtain the force F; (t) from uj (t) is as follows:
1) Evaluate Au,(t) from Equation (3-7-32)
2) Evaluate u(t) from Equation (3-7-31)
3) Evaluate F;(t) from Equation (3-7-27)

Before the relief point of the dashpot, Equation (3-7-32) will be obtained by changing C, - C,, F, =0

S

as
K,u. (t)- (K, +K —-A
AUC (t) _ dulj (t)C ( d + )uc (t t) (3_7_33)
“L4+(Ky +K)
At

When the velocity of the dashpot is over the negative relief point, Equation (3-7-32) will be obtained by
changing F, — —F,,
K u: (1) — (K, +K)u_ (t—At)+ F
Au, (t) =—° 1 (® ((: o+ K)u(t-AD + F, (3-7-34)
—24+(K, +K
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In case there is no elastic spring,

W
c —
o I 0 Fij, uj
Node i Node j
Fc, Uc
Figure 3-7-12 Voigt model without connection spring
U;; = U (t)
F; =F =Ku +Cu, +F
Au_(t) Au;(t
uc(t): c(): 'J()
At At
Therefore,
Auij (t)
F; () = Ku; (t) +C, +F, (3-7-35)
Before the relief point of the dashpot,
Auij (t)
Fi(t)=Ku; () +C,—— (3-7-36)
At
When the velocity of the dashpot is over the negative relief point,
Auij (t)
F; (1) = Ku; (t) +C, ~F, (3-7-37)
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(4) Algorithm for viscoelastic damper (Kelvin-Voigt model) with a nonlinear spring

In case the viscoelastic damper is connected with a nonlinear friction damper, we assume that the connection

spring is the friction damper (including elastic element) with the spontaneous stiffness, K, .

Ky C —
o—/\/\/\/ o o MY
Node i Node j
Fk, Uk FC, Uc
I:k Fk Fk
U, —|— u; - f U, =u, +U;

Elastic element Friction damper

Friction damper including elastic element

Figure 3-7-13 Visco-elastic damper with a friction damper (= Visco-plastic damper)

Since the elastic spring and the dashpot are connected in a series,

F=F=F
where, F, : force of the connection spring
F_: force of the dashpot and spring

C

F; : force between i-j nodes

The force of the connection spring, F, , is obtained as,
F (t)=F (t—At)+K,Au,
or AF, =K Au, =K, (Au; —Au,)
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where, u, : relative displacement of the connection spring
U, : relative displacement of the dashpot and spring

uj; : relative displacement between i-j nodes

The force of the dashpot and spring is,

Fe

*
relief point

Fs |---~

c .
.1 Uc

L

Figure 3-7-14 Bi-linear model

F. =Ku, +C,u, +F

F,(t—At)+ AF, = K{Au,(t) +u,(t—At)} +C,

Au (t)
A Q.

FQ, = K{Au (t) +u (t-At)} +C, Alkt(t)

—-F (t—At)+F,

AF, :[K +%)Auc(t)+ Ku (t—At)-F (t-At)+ F

When the time interval At is small enough, the velocity at time t can be expressed as,

Au, (t) =u, (1) — U, (t - AY)
From Equations (3-1-84)
AF, =K Au, =K, (Au; —Au,)

From the condition AF, = AF, and Equation (37-41)

Kq(Au; —Au,) = (K +i—ijAuc(t)+ Ku (t—At)-F (t—At)+ F,

F.(t—At) + K, Aug (t) — Ku, (t - At) - F

Au () =
K+K, +&
At
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(3-7-42)

(3-7-43)

(3-7-44)
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The algorithm to obtain the force F; (t) from u; (t) is as follows:
1) Evaluate Au,(t) from Equation (3-7-45)
2) Evaluate u.(t) from Equation (3-7-43)
3) Evaluate Au, =Au; —Au,
4) Evaluate F;(t) from the bilinear hysteresis model of the friction damper (including elastic

element).
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(5) Algorithm for viscoelastic damper (4-element model) devise

5-1) Four-element model

Reference:

Yutaka Nakamura, Tetsuya Hanzawa, Takeshi Nomura and Tomokazu Takada, "Performance-Based
Placement of Manufactured Viscoelastic Dampers for Design Response Spectrum"”, frontiers in Build
Environment, 27 May 2016, Sec. Earthquake Engineering

\Volume 2 - 2016 | https://doi.org/10.3389/fbuil.2016.00010

A mechanical model for the VE material comprises two non-linear dashpot elements and two non-linear

spring elements as shown in the figure below:

K
2 GGy o AW P 001Kz
W“ sonstant as long as ¥ <max|y —
C] K 1 rltlringTa ;::u:i 111; tl‘:hy then \ Ky
—HEWA-
c, §,=0.1d Jﬁ
I | | —~— =?d.
: ! >
0.5 max['yl y:gfd
Four-element model Nonlinearity of K;, C; and C; Nonlinearity of K>
The damping coefficients C1, C, and the stiffness K1, Kz are expressed as,
—1_—0.640 _ As
Ci=476 x 10 'y X l x Fy (Te) (N x s/mm)
Cy = 1.59 x 10 2y 3% % x F(Te) (N x s/mm)
—1 —0.7 A
Ki=283x10 'y """ x ?‘ % Fy(Te) (N/mm)
K =157 x 2LLFQOY=0D) A p iy (N/mm)
Y d
F (Te) = exp{—0.017 (T. — 20)} (3-7-46)

where,  y: shear strain,
As: area of the VE material,
d: thickness of the VE material,

Te: temperature
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5-2) Equivalent Stiffness and Damping of 4-element model

D _ANA

K hoo
WTH— - «
6o @

d = Ae'®t
v = iwAet®t
dk = Akei“’t

- iwt
d. =A.e

fo = Kpd = K Ae™t
f. = Cv = iwCyAe't
fi = Kydy = K1Akeiwt

fi = Civ. = iwCAe™t

From d=d+d,

. . . fi fi 11 K, + iwC,
A lwt — A lwt 4 A lwt — (_) + < ) — (_ + ) = (—)
¢ k€ e ) T \we) T \K Y ee) T e,

_ ( iwK,Cy )Aeiwt _ (1K, Gy (K, — iwCy) Lotk = w?C 2Ky + iwC K, ? Loiat
1 K1 + l(l)Cl K12 + (1)2C12 K12 + w2C12

From f=L+hA+]
w?C, %K, + wC K2

K2 + w2(,?

2¢,%K . C,K,* .
=|K, + —(;) L) Aeiet + ¢, + — 1| iw Aeiet
K,° + w?C, K,° + w?C,

w?C, %K, C K>
K,° + w?C, K,° + w?C,

f:f2+f1+fc:[K2+< )"‘iwCz]Aeiwt

Therefore, Equivalent stiffness Ky, Equivalent damping coefficient Cg, and Equivalent damping factor h

are:
w?C, %K, C K, ? wCy  wK2(C, + C,) + w?C,%C,
Ke=Ko+\oaz) ‘=¥ o 2-2) "5k 5572 20 2
K +(J)C Kl +(l) Cl 2I(R 2K1 K2+w C]_ (K1+K2)
(3-7-47)
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5-3) Constitutive equation of 4-element model

LByIE
@Kl fl.Cl fij
ot M—H—o — 4
: dy, d, g
® T
Al f

f1(t) = Kyd, (t)
. d
fi(t) = Cd, = C1AA_tc = Kyd (t)

C, Ad,

di(t) = K, At

Ad,. = d (t) — d.(t — At)

From dl] = dk + d(:

Ad, C, Ad,
+ =— +Ad, + —A
AT d.(t) K, At d. +d.(t — At)

C
dij(t) = Fl
1

dy(t) = (1 L4 >Adc +d,(t — Ab)

K, At
Ad, = (Kl"Tl%){di () — d (¢ — At)} (3-7-48)
d.(t) =d.(t — At) + Ad, (3-7-49)

f2(t) = fo(t — At) + K, Ad;
Ad

f1(t) = Cldc = C1A_tc

d;;(t) — d;;(t — At)
At

fij(®) = £2(t) + f1(8) + fc(t) (3-7-50)

fc(t) = Czd.u = CZ

The algorithm to obtain the force f;; from d;; is as follows:
4) Evaluate Ad. from Equation (3-7-48)
5) Evaluate d.(t) from Equation (3-7-49)
6) Evaluate f;; from Equation (3-7-50)
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5-4) Constitutive equation of 4-element model with a nonlinear spring

DIy Y

L dg de  d, J
® 7o
{}=
f.
fon dy

Since the spring and the 4-element model are connected in a series,

fa(®) = fa(t) = £i;(®)

where, fa : force of the connection spring
fa : force of the 4-element model
fij : force between i-j nodes

The force of the connection spring, f;, is obtained as,
fa@®) = fa(t — At) + KyAdy = f(¢ — At) + K4{Ad;; — Ad,}  (Bilinear)  (3-7-51)

where, dg - relative displacement of the connection spring

fi = K di (¢)
. Ad
fi=0Cd, = ClA_tC = K,yd(t)

¢, Ad,

di(t) = K, At

Ad, = d (t) — d.(t — At)

From d, =d,+d,

G Ad, _ G Ad,
d4-(t) - Kl At + dc(t) - Kl At +Adc + dc(t At)
C
d,(t) = (1 + Zt) Ad, + d.(t — At)
1
K
Ad, = —1cl{d4(t) —d.(t — At)}
(K + %)

(3-7-52)
d.(t) =d.(t — At) + Ad,
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(@) = fo(t — At) + K,Ad,  (Bilinear) (3-7-53)

fi = e = 0 = oy (0) — delt — 80} = Kyfd(t — 80) + B, — (e = A0}
(k3 +5H)

where

Cl Kl
K= "1

4 (i + 32)

) Ad,

fe = Cdy = C At

From fai=fi+fi+f
fo = fo+ fi + fo = fo(t = AE) + KpAdy + Ky{d(t — AL) + Ady — d(t — A} + €, AA_dt‘*
From  fij =fa=fa
fij(t) = <K2 + K, + %) Ady + fo(t — At) + K,d,(t — At) — K, d (t — At)
= fa(t — At) + K4 (Ad;; — Ady)

C
(KZ +K,+K,; + A—i) Ady + fo(t — At) + K,d,(t — At) — Kud (t — At) = f,(t — At) + KzAd,;

Ad, = fa(t — At) — fo(t — At) + KgAd;j — Kudy(t — At) + K,d (t — At)
W=

C
Ky + Ky + Ky + 52

(3-7-54)

The algorithm to obtain the force f;; from d;; is as follows:
1) Evaluate Ad, from Equation (3-7-54)
2) Evaluate Ad, from Equation (3-7-52)
3) Evaluate f;; and update K, from Equation (3-7-51)
4) Evaluate f, and update K, from Equation (3-7-53)
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Example)

Properties of viscoelastic material

d =5.00 mm
A =5600.0 mm?
T, =20.0C

The damping coefficients C1, C, and the stiffness Ki, Kz are expressed as,

- A
C =476 x 107 'y « ?5 x F(Te) (N x s/mm)

Cy = 1.59 x 107 2y~ "7% x % x F (Te) (N x s/mm)

1 —oms A
Ki=283x10 'y """ x ?“' % F(Te) (N/mm)

0.1+ 0.01(y—0.1)
¥

K3 =1.57 %

X % x F (T.) (N/mm)

F,(Te) = exp {—0.017 (T. — 20)}

Displacement (11Hz, 15mm)
20

10

-10

-20

Force of Viscoelastic damper (N)
5000

4000

3000

2000

-20 -15 ' ; 15

264
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¢) Vertical damper

In cases where the damper is installed at an oblique angle,

B (x1,¥1.21)

X; —Xo =rsinécos e = xl

Y1 — Yo =rsinfsing =yl

7y —Zy =1rcosf =zl

(x1,¥1,21) = (xg +rsin@sing,y, +rsindsing,z, +rcoso)

L= \/(xl —x0)2+ (1 —yo)? + (21 —2))2 =71
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1) From nodal displacement to damper displacement

Au,,

AU, Au,
AU, :[T ] Au,
AuyB VE

Ao, Au,
Ad,

Uya Uy Au,
Ug Uy AU, g
Upa | _ JUsa N Au,,
Uyg Uyg Aug
O O AS,,
Og), 98], (Adg

(%01, Y01, 201) = (xo T Uyp Yo T Ups Zg + 5zA)

(11, ¥11,211) = (x1 T Uyp, Y1 T UyR Z1 T+ 623)

L, = \/(x11 —%01)? + (V11 — Yo1)? + (211 — Z01)?

2
= \/(X1 — X+ Uyp — Uyy)? + (}’1 — Yot Uyp — uyA) + (21 — 29 + 8,5 — 6,4)?

2
= \/(Xl + Uyp — uxA)z + (yl + Uyp — uyA) + (Zl + 5ZB - ZA)2

ud:Ll—LO
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2) Damper force to nodal force
When the damper is a viscous damper,
Vg = Ug

Fq = Cqlvgl*sgn(vy)

The unit vector along the damper axis (direction vector) is

€q = L_ll((xn = %01), (V11 — Yo1), (z11 — 201)) = (l,m,n)

where
1
l= IR (x11 — X01) = L—l(XI + Uyp — Uya)
1
1 1
m= L—l(Y11 —Yo1) = L—l(}’l +Uyp — Uyg)
1 1
n= L—(Zn —Zp1) = L—(Zl + 8,8 — 824)
1 1
A
F,
F, !
er
7'F,

The force components in the X, y, z directions are expressed as,

Fy !
Fy e m Fd
F, n

where, F, isthe axial force of the damper.

Fa —I
Fe I
FyA _ -m F
FyB m
F,. -n
Fe : n
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3.8 Ground Spring

3.8.1 Soil structure interaction

a) When building and foundation on ground are subjected to an earthquake excitation, the system can be
divided into two parts: b-1) building and foundation with interaction forces and b-2) ground with zero-mass
foundation subjected to the reaction of interaction forces and an earthquake excitation, which can be
divided further into c-1) zero-mass foundation subjected to an earthquake excitation (kinematic
interaction) and c-2) zero-mass foundation subjected to the reaction of interaction forces (inertia

interaction).

b-1) Building and foundation

a) Building and foundation [

G

e

Input ground motion b-2) Ground with zero-mass foundation

~
S Bram AN ,
e
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In case of c-2), the force-displacement relationship is written as,

e ¥
MG KHS KR 96

where P;,M; are sway and rocking forces corresponding to the interaction forces between the
superstructure (building-foundation) and the ground, U, 6, are sway and rocking displacements. This

stiffness matrix is called “dynamic impedance matrix”.

If we neglect the coupling between sway and rocking degrees of freedom, the dynamic impedance matrix is
evaluated separately from the d-1) sway impedance K, and d-2) rocking impedance K as follows:

P, _ Ky 0 |[ug (3.82)
Mg 0 Kyillb

7

- 1
o -
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This corresponds to the Sway-Rocking model as shown below:

¢-2) Inertia interaction ¢-2) Sway-Rocking model

Ms, O

— P, Ug
.

. I
o

7

=i
T 1
|
1
o |
|
1
1
109
C
(0]

Finally, the soil-structure interaction is
Il e implemented adding the sway and rocking
B springs at the bottom of superstructure.
B N
I N
B N
KH

Ke

Input ground motion

It is important to note that the input ground motion to an embedded foundation is smaller than the input
ground motion in the free field due to the influence of the embedding of the foundation. This effect is called

“Kinematic interaction”.

Free filed Embedded foundation

J—
s
-
-

7 7
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3.8.2 Cone model to calculate the static stiffness

The cone model is proposed by Wolf [1994] for determining the dynamic stiffness of a foundation on the
ground. The foundation is assumed as an equivalent rigid cylinder and only vertically incident shear wave
is considered. In case of the stratified ground, a simplified formulation is proposed by llba et.al. [2000]
without considering the reflection and refraction coefficients at the boundary of the soil layer to obtain the

static stiffness. The following formulation is adopted in the STERA 3D software.

Reference:

1) John P Wolf, Foundation Vibration Analysis Using Simple Physical Models, Prentice Hall, 1994

2) liba M., Miura K and Koyamada K, "Simplified Method for Static Soil Stiffness of Surface Foundation”,
Proceedings of AlJ Annual Meeting, 303-304, AlJ, 2000. (in Japanese)

a) Sway spring
Consider a semi-infinite cone whose area increases in the depth direction. First, we show the calculation
method of the horizontal ground spring (sway spring) for the rectangular foundation 2bx2c¢ (ground

surface foundation or embedded foundation). The equivalent radius of a circle having the same area is

bc
obtainedas I, =2,/—.

Q0 ..
Q+6:"

F.
R
i I[i
B
/

The forces of the minute portion at the distance z from the apex of the cone are:
« Shear force at the upper surface
ou
Q=7r’Gy=nr’G— (3-8-3)
0z
« Shear force at the lower surface

2 2 2

Q+d—de=7z (1+%jr Gi(u+a—udz)=n(l+%j r’'G a—u+a—l:dz
dz z 0z 0z z 07 01

(3-8-4)

Considering the static case ignoring the inertial force acting on the minute part, from the balancing of

forces,
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> (Q+d—dej—Q=0
dz
2 2
> ;r(1+$j 26| M gz | e Mo
Z 07 01 0z

2 2 2 2 2
> 1+% a—u+a—l:dz —a—u:a—l:dz+ 2$+ a a—u+a—l:dz =0
z 0z o0z oz oz z z oz 0z
=> Ignoring high-order small amount terms

P 20 _

—_— 0 3-8-5
07> 7 012 (3-8-9)

The solution to this equation can be expressed as follows:
A
u=—+B (3-8-6)
z

where A and B as undetermined coefficients.

Assuming that the displacement on the ground surface is U and the displacement at the depth d is O as

boundary conditions,

U=TA+B, 0=§+B (3-8-7)
From this, the coefficient A is
Ao ld (3-8-8)

d-I
Let Q, be the shear force of the ground surface

ou A d
Q, = 71G o /G [—I—z) = —(m‘ozG CE JU (3-8-9)

Therefore, the horizontal spring K, on the ground surface is

d

Ky = ) =71/G

3-8-10
U (d-1)l (3620
Assuming that d is infinite,
2
r'G
K, =20 (3-8-11)

I

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained

theoretically from the following formula.
8Gr,

- 2—-v

If the two springs are set to be equal, the distance | from the apex of the cone to the ground surface is

K, (3-8-12)

obtained as follows:
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h _ N G 8 (3-6-13)

AN T
GL GL Zg

-
Gl’ v] L 4 dl
»
Gy, v, v d;
'y 2?’5_!
¥ /* Zj.1
s T e R =] Py
Gy, 34 LGy T\ 4,
F 3 I‘ -..I
<+ > Z
X / 2r,; !
73 M
Gn-l’ vn-l v dn-l
) &
Gm vn ¥ dﬂ

In case of the stratified ground, consider a truncated cone of thickness d, from the i-th layer of stratified

ground and z; be the coordinate of the bottom of the i-th layer. The radius of the truncated cone I, at

depth z; isthen calculated as follows from the geometric relationship.
Z.
r=2ir (3-8-14)
ZO

The horizontal spring on the upper surface of this truncated cone is

2 2
Ki, = 2,6, At ﬂ(—zil ro} G =ThG [9] fil (3-8-15)
Zi 4 (Zi - Zi—l) Z, Gl Zy (Zi - Zi—l)

The horizontal spring K, at the base bottom position is obtained as a synthetic spring in which

horizontal springs of each layer are connected in series.

1
— =3 = (3-8-16)
K i Ky

However, in the bottom layer,

5 2
K,Tl _ 7l G, [Gn J ZnZng BN ﬂ[&} Zna (Zn - OO) (3-8-17)
2, \ G, )zy(2,-2,4) z, \G ) 7

Finally, the horizontal ground spring K, is obtained as,
Ko = BiKsp (3-8-18)
where

1 AL ‘G, 7z'I’OZGl _ 8rr,G,
th =

ﬂhzzn: :j Z, I (2-v)

o = G| zz, (i=1,2,---,n—1), o = Gy |2
G )z z—z G, ) z,
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b) Rocking spring

Rotational spring can be obtained as follows, similar to the method for determining horizontal spring. For
the rectangular foundation 2bx2c (ground surface foundation or embedded foundation, 2b is the
length in rotational direction), the equivalent radius of a circle having the same moment of inertia is

|(20)"(2¢)

obtainedas I, =y—">——=.

3
. . . T 4
") The moment of inertia of a circle l,=—r%
4
o (2b)’(2c)
The moment of inertia of a rectangular |, = 0

/205 ff
<—> /
L 1 Z

/M \\
muiJf ¢Hli;%
e [ - \\

f/ \;)M +%—I\Zﬂdz *.,‘.\

The forces of the minute portion at the distance z from the apex of the cone are:
+ Moment at the upper surface

4
M=% g 90
oz 4 oz

« Moment at the lower surface

4 4 2
M +dﬂd2=_£ (14_%)[}0 E£(0+%dzj=—£(l+d—zj rr‘gE %4_%(12
dz 4 A 0z 0z 4 yA 071 02

(3-8-19)

(3-8-20)
Considering the static case ignoring the inertial force acting on the minute part, from the balancing of
forces,

> (M +d—Mdzj—M =0
dz

4 2 4
> —£(1+$) riE %+gdz o 6—u:0
4 Z 07 01 4 oz

=> Ignoring high-order small amount terms

@0 400 _

+— 0 3-8-21
07> 7 0z ( )

The solution to this equation can be expressed as follows:
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o-L 8 (3-8-22)
Z

where A and B as undetermined coefficients.

Assuming that the rotational displacement on the ground surface is ® and the displacement at the depth d
is 0 as boundary conditions,

@ 3
(I, +d)

From this, the coefficient A is

(I, +d)’1;2
A=——2"1-0 (3-8-24)
(I +d) =12

Let M, be the shear force of the ground surface
ary _ou  xrl 3A) art 3(1, +d)3
4 oz 4 I 4 {(Ir+d) _|r3}|r
Therefore, the rotational spring K, on the ground surface is

K. - M, _ arh e 3(1, +d)3 (38.26)
® 4 «L+df—ﬁ}h

(3-8-25)

Assuming that d is infinite,
_ 3ariE
o4

r

(3-8-27)

The horizontal spring of the circular rigid foundation on semi-infinite uniform ground is obtained

theoretically from the following formula.

__8G o

3 (3-8-28)

If the two springs are set to be equal, the distance |. from the apex of the cone to the ground surface is
obtained as follows:
9(1—v2)

2G(1+v) — L:—jﬁ——n% (3-8-29)

8Gry  3ariE  3xriE
3(1-v) 4l 4l

r r
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In case of the stratified ground, consider a truncated cone of thickness d, from the i-th layer of stratified
ground and Z,; be the coordinate of the bottom of the i-th layer. The radius of the truncated cone r,; at

depth z,; isthen calculated as follows from the geometric relationship.

(3-8-30)

The rotational spring on the upper surface of this truncated cone is

K=l 3(zu+d) 34, (E] ZiZia (3-8-31)
4 {( i t+d ) z; 1}2 . 4z, \ E Z?o(zfi _Zfi—l)

The rotational spring K, at the base bottom position is obtained as a synthetic spring in which rotational

springs of each layer are connected in series.
1 =1
— =) — (3-8-32)
Krb i=0 KR

However, in the bottom layer,

N T
R n
4z, \E )z (20-74) 4z, \E )z

ZrO

Finally, the horizontal ground spring K, is obtained as,
K = B Ky, (3-8-34)

»—»—&7
— e e

_3nrgE, _3argE 4 riE
n ( 1 J 4z, 4, 31—y}

3
ai =(EJ r| r|—l (i=1,2,"',n—1), anz[E][EJ
E )z (23 - Zn_1 B %

L

16

(=]

,;

p/4
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3.8.3 Embedded foundation

Khb’ Krb

Khe’ Kre

In case of embedded spread foundation, the resistances at the side of the foundation K., K,, can be

expected in addition to the resistances K, , K, at the base of the foundation. That is,

Kh = Khb + Khe
Kr = Krb + Kre
where
D G
Khe = gheKhb —e e
Iy Ghb

3
K,.=¢6K, 2.3&+0.58(ﬂj Sne

rrO hb

m

zGiHi —
Gy = » Gy = (2 V) it

m

8r
2 H. 0
i=1 I

e

(3-8-35)

(3-8-36)

(3-8-37)

(3-8-38)

D, is the depth of the foundation. &, and &, are the earth pressure reduction coefficients of

horizontal and rotational directions at the side of the foundation and they are set to 0.5 when considering

only the side receiving the reaction force from ground at the time of the earthquake. m is the number of

soil layers from the surface to the bottom at the side the foundation where the earth pressure acts. v is the

average Poisson's ratio of the ground under the foundation base. The damping at the embedded part is not

considered.
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3.8.4 Radiation damping

The static stiffness obtained by the cone model alone can not express the radiation damping that the
energy of ground shaking spreads to a distance.

To evaluate the radiation damping, we consider a semi-infinite earth column with the same area of the
foundation where a shear wave travels downward when the foundation sways harmonically in a horizontal
direction.

The wave travels in the earth column can be expressed as the solution of the wave equation.

o°u o°u
_2:V5271 V.= |— (3-8-39)
ot 0°z 0
where G is the shear modulus of the soil, p is the density of the soil, and V, is the shear wave
velocity.
When the foundation sways harmonically as ue™ , the solution of the wave equation is
u(z,t)=ue® " (3-8-40)
The shear force at the bottom of the foundation is,
ou GA. .+ GAdu du
—|,, =—lupe™ =——=(pV.A)—
oz 0 =y 0P =g ~ (VA

S S
where A is the area of the foundation. Therefore, the damping force by the radiation is equivalent as the

Q=-GA (3-8-41)

viscous damping of a dashpot with a damping coefficient
C, = pV,A (3-8-42)

The radiation damping of a rocking motion is expressed as the similar formula

Cr=p(nV,)] (3-8-43)
4
zr
where | = T is the second moment of inertia for a circular foundation with the radius r
3.4 ) . . ) ) . L
n =———— isthe coefficient for vertical wave velocity, where v isthe Poisson’s ratio
z(1-v)
ipt ipt
4&’ ueipt Pelp
el «—>
: 7| C=pVA
¥ 5
N, "\.
A | [Fpee | M
" i
v
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In case of the stratified ground, we can use the following formula for the radiation damping
C, =pV.A (3-8-44)

3.4
C.=p. (nV)!1, =22
R =P (nVe) T )

where p, is the average density, V, is the average shear wave velocity and v, is the average shear

(3-8-45)

modulus defined by the weighted average by depth of layers under the basement as

“ pd, Zn:Vidi anvidi
po="F—, V= —  y =1L (3-8-46)

3.8.5 Complex stiffness with material damping

The damping effect of the soil material can be considered by setting the shear modulus to the following

complex shear modulus.

G =G(1+2ih) (3-8-47)
where h is the damping factor of the soil. As a result, the dynamic stiffness obtained from the cone model
becomes also complex value as,

K, =K, +iK, =K, (1+2ih,) :sway spring

Kg =Kg+iKg'=Kg (1+2ihy)  :rocking spring (3-8-48)
Furthermore, the damping coefficient is obtained from the imaginary part of the complex stiffness under the
periodic vibration of the circular frequency o.

K-x+C-X > assuming x=ae'" > (K+iwC)x
From the equivalent condition,

(K+ia)C)x:(K+iK')x= K(1+2ih)x

Therefore, C= K = 2h—K (3-8-49)
0] 0]

STERA _3D calculates the circular frequency o as
2r
o =—
Tl

where T, is the first natural period of the structure with the ground spring (real part).

(3-8-50)
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3.8.6 Impedance matrix

It is known that radiation damping is likely to occur in a frequency band higher than the dominant
frequency of the ground ( fg), and the effect is greater at higher frequencies. Therefore, the damping is

evaluated separately for a lower frequency side and a higher frequency side than the dominant frequency.

a) Incaseof f<f; (w<wy) forSwayspringand f <2f; (w<2w;) for Rocking spring

Considering material damping only,

P; =K, Uug +C,Ug, C :K:Zh—K (3-8-51)
w w
M, =Ky 0 +Cgb, (3-8-52)
where
Ky, Cy . stiffness and damping of sway spring
Kz, Cy - stiffness and damping of rocking spring

b) Incaseof f>f; (w>wy) forSwayspringand f >2f; (&> 2w;) for Rocking spring

Considering both material damping and radiation damping,

P, =K, Ug +(Cy +Cy, ")Ug (3-8-53)

M =Ky 0 +(Cr +Cr ") 0s (3-8-54)
where

C,.C;' : radiation damping for sway and rocking

To avoid the discontinuous of damping, we modify the formula as

- f—f
P, =K, Us +(Cy +£4Cy s, &y = . £

L f-2f,
MG:KR GG+(CR+§RCR )HG’ é’R:T

(3-8-55)

(3-8-56)

In a matrix form

B S 2] o
Me| | 0 Kql|l6s 0 Ca+C:Cq' || 0
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3.8.7 Pile foundation

Now we discuss the Sway and Rocking springs for the foundation with piles.

Inertia interaction

v/\MG’f" < e -

<
®
o

\\

——
R
R —

i /”ﬁ .
a) Vertical stiffness of a single pile
The vertical stiffness of a single pile is obtained from the follow formula:
kg (1+€72" )+ EAx(1-e72*" K
K, = EAa g . L) ( . L), a= |- (3-8-58)
ke (1—e7" )+ EA (1+e7) EA

where,

E : Young’s Modulus of the pile, A: Area of the pile, L : Length of the pile
ks : Vertical spring of the soil surrounding the pile, Kg : Vertical spring at the bottom of the pile
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a-1) Equilibrium condition of the vertical forces in a pile

The equilibrium condition of the vertical forces in a small segment is

dP =ku,dz=0 (3-8-59)
The axial strain in the segment is obtained as
du P
=1 (3-8-60)
dz EA
Therefore
dP d’u
—=EA—ZX =k, (3-8-61)
dz dz?  °
The solution of this second order differential equation is
k
u, =ce”+ce ™, a=,—- 3-8-62
z 1 2 EA ( )
Also
P, = EAx(c,e “ —ce”) (3-8-63)
Setting the boundary conditionsas P, =P, at z=0 and u, =u,_ at z=1L,
P, =EAux(c,—¢,) (3-8-64)
u =ce“ +ce (3-8-65)

Therefore, the coefficients ¢, and C, are obtained as
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EAqu, —Pe ™" _ EAau, +Pe""
EAx(e™ +e ")’ EAa (e +e )

17 2=
The force at the bottom of the pile P is
P = EAa(c,e ™ —ce)

From the relationship u, =P, /kj ,

o 2K, P,

“TK, (e +e™ )+ EAa (e —e ")
and

. 2P,

Kp (e +e" )+ EAx (e —e )

The displacement at the head of the pile is
Uy =G +GC,
Therefore, the stiffness of the vertical spring at the head of the pile is
R, _EAx(c,-¢)  EAx(Re™ +Re™)
U, C,+C, 2EAqu, —Pe " +Pe
EAx (e +e )

Ko =

2 al _ a-al
2EAa kB (eaL+e—aL)+EAa(eaL_e—aL)+(e € )

EAc (e +e‘“L){k (e +e™")+EAx (e —e‘“L)}

4Ef&x4—( e ) ks (€7 +e )+ EA (e e )|

)
- (e e ) +EAa(e™ )
e )

+EAax (e
( L) 4 EAoc(e“L +e“"L)
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a-2) Vertical spring of the soil surrounding the pile
The vertical spring of the soil surrounding the pile K is obtained as the friction resistance of soil

surrounding the soil (Randolph and Wroth, 1978).

- (r+drid@

a, —\

(a) Concentric cylinder around loaded pile  (b) Stresses in soil element

Reference: Randolph M.F and Wroth C.P, “Analysis and deformation of vertically loaded piles”, Journal of
Geotechnical Engineering 104(12): 1465-1487. 1978.

From the equilibrium condition of vertical forces

0
(r+ﬂ](r+dr)d6dy—rrd9dy+ o,+ Iy dy (r+£jd6dr—ay[r+£Jd0dr:0
or dy 2 2

(3-8-70)
Neglecting higher order
o(zr oo
(1) 2% g (3-8-71)
or oy
Assuming the stress change along the depth do, /8y is negligible, the second term will be zero. Then,
o(zr
o) g c872)
or
Integrating from the pile radius r, to r,
Ird (zr)=0 = z(r)r—z(r,)r,=0
r(r)r r
T(r)z—( o)t _ 7l (3-8-73)
r r

Assuming the deformation along the radius du is smaller than the deformation along the depth dw, the

shear stain is

_6u+8w~ dw _ 7(r) g,

7_5 ENE_G(r) rG(r) (3-8-74)
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The vertical shear deformation is obtained by integrating from r, to r_,

mol 7, r
W, =7, | —dr=-2%In| = 3-8-75
s =toh [, o dr=-2 [r] (3-8-75)
Randolf and Worth proposed the following empirical formula for the radius I

r,=25L(1-v) (3-8-76)

The vertical force around the pile is calculated as

27G
P= (27”0 ) T = {In(f—/r)J W (3-8-77)
m/To

Therefore, the vertical spring of the soil surrounding the pile K is
27G

ke =—"°"— =25L(1- 3-8-78
in(rr) " (1-v.) (3-8-78)
where,
G, = %i(Gidi ) : average shear modulus, v, = %i(vidi ): average Poisson ratio
i=1 i=1

a-3) Vertical spring at the bottom of the pile
The vertical spring at the bottom of the pile kg is obtained as a static impedance of circular
foundation as,
_3r 7Ggl,
° 8 (1-vy)

where,

(3-8-79)

Gg : shear modulus of the soil at the bottom of the pile
Vg . Poisson ratio of the soil at the bottom of the pile

285



b) Horizontal stiffness of a single pile

b-1) Horizontal stiffness of a single pile

The flexural deformation of the infinite pile under horizontal load at the top of the pile is

d'y
EIW‘F p(X):O

where p(X) is the reaction force of the soil.
Assuming
p(x)=k,By

where B is the width of the pile.

The solution is expressed as

y =e”( A sin Bx+ B, cos Bx)+e”(C,sin Sx+ D, cos Sx)

k. B
=4 h
P 4EI
Since the deformation in infinite depth is zero, thatis x — o, y=0,
A=B=0
In case of fixed pile head,
0(0)=% =-pC,+pD, =0 > C, =D
x=0
The horizontal force at the pile head is
H=-0Q (0)
Therefore,
0 3
M:_d_z :—4C1ﬂ3:—i Clst
El d o El 4 5°El
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(3-8-82)
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(3-8-84)

(3-8-85)
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The horizontal deformation of the pile is
H

= e 7 (sin Bx +cos Bx 3-8-87
y=7 Sl (sinp x) ( )
The deformation of the pile head is
H
- _ 3-8-88
¢ 45°El ( )

Therefore, the horizontal stiffness is

K, = 44°El = (4E1)"* (k,B)"" (3-8-89)

Francis (1964) proposed the following formula for the horizontal ground spring per unit length of a

single pile:

13 (E.B* )"
K =k,B=—"ms | =52 (3-8-90)
1-vZ|El,

where
E, : Young’s modulus of a pile, 1, : Moment of inertia of a pile

E, : Young’s modulus of soil, v : Poisson ratio of soil

This formula is based on the study by Biot (1937) with respect to the ground spring against bending of
an infinite beam on ground and is modified by Visic (1961). Francis extended this concept to the pile

considered that there is ground on both sides of the beam and doubled the ground stiffness.

Reference:

1) Francis A. J, Analysis of Pile Groups with Flexural Resistance, Journal of the Soil Mechanics and
Foundations Division, 1964, Vol. 90, Issue 3, Pg. 1-32

2) Biot, M. A. Bending of an infinite beam on an elastic foundation. J. Appl. Mech., 1937, 4, 1, Al-A7

3) Vesic A.B, Bending of beams resting on isotropic elastic solid, Journal of the Engineering Mechanics
Division, 1961, Vol. 87, Issue 2, Pg. 35-54
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b-2) Horizontal damping of a single pile

Gazetas proposed the following formula for the horizontal damping per unit length of a single pile:

Ces =2psB (VL +Vy) (3-8-91)

S|wave
where A
3.4V '
V., =——2—: Lysmer analog wave |
z(1-vg) -

This damping expresses the radiation damping “--- (051 === Pwave

in both directions of the pile. Pille
|
v

Reference: Gazetas, G. and Dobry, R, Horizontal Response of Piles in Layered Soils, J. Geo tech. Engrg.

Div.,ASCE, \Vol.110, pp.20-40, 1984

b-3) Ground spring and damping coefficient between multiple layers

The ground spring and damping coefficient between multiple layers can be calculated by multiplying

the layer thickness of each layer and averaging as

K'si 20-5(k Hi—1+kaiHi)

fs(i-1)

C'gSi :0-5<C Hi—l+CgSiHi)

gS(i-1)
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¢) Impedance of group piles
In case of group piles, the impedance of the foundation can not be obtained from the simple addition

of the impedances of individual piles because of the interaction of piles.

Y

_—

s

.

c-1) Group effect in horizontal direction (stiffness)
The horizontal stiffness of group piles is obtained from the horizontal stiffness of a single pile as,
Kie = Np By Kiss (3-8-94)
where
K\, : horizontal stiffness of group piles, K, : horizontal stiffness of a single pile
N, : number of piles, A, : coefficient of group effect
The following formula is adopted for STERA_3D as the coefficient of group effect for horizontal ( X)

direction,

—0.54

( N y /2)—0.59(5/8) (3_8_95)

)—0.43

0.3 —0.74(S/B
where
S : distance between piles in x-direction, B : diameter of pile,

N

X!

N y - number of piles in x-direction and y-direction
The horizontal stiffness of a single pile is obtained from Eqg. (3-8-89) as
Kys = (4Ep 15 )" k¥ (3-8-96)
where
Izs : the stiffness coefficient of a single pile under homogenous ground
The horizontal stiffness of group piles

Kie = Np By Kys = Np S, (4EPIP)

1/4

K = (4NLE, 1, ) k¥ (3-8-97)

ks = No ks (3-8-98)
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For the horizontal damping, the group effect is assumed negligible, and the horizontal damping of

group piles is obtained as,

where

Che = NpCys (3-8-99)

Cys - damping coefficient of group piles, C,,: damping coefficient of a single pile

In evaluating the horizontal ground stiffness of the group pile K,,; in layered ground, it is necessary

to determine the value of the stiffness coefficient Kk which represents the average stiffness coefficient in

layered ground. The following iterative procedure is used to calculate K .

Step. 1

Step. 2

Step. 3

Step. 4

L
u, =u(0)

Set the initial value of Kk as

ks =average of kg, inthe surface layer (< 5B)

where kg, = N, /3,*°kg : horizontal stiffness of group pile at i-th layer from Eq.(3-8-89)

The flexural deformation of a pile under the horizontal load P at the top is approximated by

e (sin Bx+cos fx), B=i 4k|§| (3-8-100)

p
U=——+
4NLEp 18

The horizontal stiffness at the top can be calculated by,

§ Kail,
Koz = q (3-8-101)
0

Update k; as

1/4

ke =(Kuss)"* /(4N,E,l,) (3-8-102)

Go back to Step 1 until K5, = K, 5.

290



c-2) Group effect in horizontal direction (damping)

The damping effect of the soil material is considered as
ksi =Kg; (1+2ihg;) (3-8-103)

where hg, is the damping factor of the soil in i-th layer. The horizontal damping at the top of group piles

can be calculated by,

h..u.
hye = ZU—G (3-8-104)
0

Therefore, the imaginary part of the horizontal stiffness is
Kie "* 2hcKig

In the same way, the horizontal radiation damping at the top of group piles can be calculated by

CeiU:
Cg = h (3-8-105)
Uo
where  Cg =N Cg

c-3) Group effect in rocking direction (stiffness)
The group effect in rotational direction is assumed negligible and the coefficient of group effect is
one. Therefore, the rotational stiffness is calculated from the vertical stiffness of individual pile as
Kooy = Zm: K,; Y7 : around x-axis (3-8-106)
Kegy = i KX : around x-axis (3-8-107)
i=1

where
X;, Y; - distance from the center of rationin X, y directions

c-4) Group effect in rocking direction (damping)
In case of rocking direction, the damping effect of the soil at the bottom of the pile is considered
dominant.
hee = h, (3-8-108)
where  h, : damping factor of the soil at the bottom of the pile

Therefore, the imaginary part of the rocking stiffness is

Keg ' = 2Nos Koo (3-8-109)
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3.8.8 Equivalent period and damping factor considering soil structure interaction

a) Equivalent period

é‘B
—

F E$ m

Ky, Ca

Force and deformation

5 =F/Kg

0=0z = F/KB
Stiffness

K=K,

Period (mass of foundation is ig

T, =2x m

é‘s :F/Ks
§:5B+5S :F(]/KB+]7/KS)
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Se =HO, =H(M/Ky)
= H(FH/K)=F/(K,/H?)
0 =05 + 0 + 04

= F(1/Ky +1/Kq +1/(K /H?))

1
: YK, +VK, +1(K, /H?)




b) Equivalent damping

b-1) Equivalent damping for material damping

Force including damping force is

F=Cé+Ks
For a harmonic excitation & = ae'®
S=iwd

Then
. C .
F = K(ler)Ejé: K (1+2hi)s

where h is the damping ratio
Y
2K
Defining the viscous damping ratio separately for each dashpot,
w,C w.C w,C
:M'hs: SS,hRZ R“R

h
®2K, 2K, 2K,

This is the case to define the damping force to be independent to the frequency of excitation.

This type of damping is called “material damping”.

Total complex stiffness will be
1 _ 1 N 1 N 1
K(1+2hi) Kg (1+2hBi) K, (1+2h5i) KR/H2(1+ 2hRi)
Using the relationship
1 1-2hi _1-2hi

= = ~1-2hi
1+2hi  (Lt2hi)(1_2hi) 1+4n’ '
Then
1 . 1 . 1 . 1 .
?(1—2h|):K—B(l—ZhBl)+K—S(1—2hS|)+ KR/HZ (1_2hRI)

From the real part
1 1 1 1
—=—t—1+ >
K Ky, K, Kg/H

From the imaginary part

2 2 2
h:£h3+£h3+ K ZhR:(T—Bj hB+(T—Sj hs+(T—R] h,
Kg K, Kq/H T T T
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b-2) Equivalent damping for viscous damping
Force including damping force is
C

F=Co+K¢s= m(—5+55j: m(2hw5+w25)
m m

For a harmonic excitation & = ae™
F =m (e’ +2hopi)s = ma’ [1+ Zh(ﬁji]cﬁ
0]
This is the case to define the damping force to be dependent to the frequency of excitation.

This type of damping is called “viscous damping”.

Total complex stiffness will be

1 1 1 1
= - +

o2 wlon( 2] e (2] o2

Using the relationship

@

;zl—Zh[ﬁji
1+2h(pji @

Then

)l () (2]

From the real part

1
=gt ot P~
0" wyt 0 g K

From the imaginary part

p K p K p K p
hl = |=—nh.,| — |[+—h.| — |[+—h, | —
(a)j Kg B[WBJ Ks S[wsj KR/HZ R(C‘)Rj

In case of the resonance frequency, pP=w

3 3 3
FENANGS
Wy (23 Wy

or
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4. Freedom Vector

4.1 Node freedom

Each node has six degrees of freedom and the freedom number is defined as shown in the figure below.

Z 3 d
A
6 i
X 1 /i)
4 ;
5 8
» | 2
Y Y Y
2
(a) lateral and rotational displacement (b) shear deformation of connection

Figure 4-1-1 Global coordinate

4.2 Freedom vector

v
X

The freedom vector is defined to indicate the number of all freedoms of the structure, where the restrained

freedom is set to be zero. For the structure in the figure below, the freedom vector has zero components for

the fixed nodes (Nodes 1-4) and eight components for other nodes (Nodes 5-8). Therefore, the total number

of freedom of the structure is 8x4 = 32.

Nodel |0
I .
._.Node4 |0
1
Node 5 :
9
Node 6 :
_____________ 116 __
17 L 2
7777 /Za
Node 7 :
_____________ 24] ° 4
o5 /Za /Za
Node 8 :
32 V') shear deformation of connection

Figure 4-2-1 Example of the freedom vector
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4.3 Dependent freedom
(1) Rigid floor assumption
In the default setting, the floor diaphragm is assumed to be rigid for the in-plane deformation. Therefore,

the in-plane freedoms at the nodes in a floor are represented by the freedoms at the center of gravity of the

same floor.

S e
L L

(a) In-place freedoms (b) Out-of-plane freedoms

2

Figure 4-3-1 In-plane and out-of-plane freedom

For example, the in-plane freedoms at the node A in Figure 4-3-2 are expressed by the in-plane freedoms at
the center of gravity G as follows:

U, 10 I, ||ue
Upr=[0 1 —l, [ Uy (4-3-1)
A 0 0 1 (|6

G: center of gravity

>
I IXA
yA

ezA

u
yA
Figure 4-3-2 Rigid floor assumption
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In case of the structure in the figure below, in addition to the original nodes, new nodes for the center of
gravity are defined as “Node 5” and “Node 10”. Under the rigid floor assumption, the freedom vector has
zero components for the in-plane freedoms at the nodes except the center of gravity. Therefore, the total

number of independent freedom is 23.

Node 1-5

Node 6

Node 7

(@)
()]
r
\éﬁ

OORPOOONOOOUIAOWNRFOOO -0

Node 8 12 7 ¥

20 V) ' shear deformation of connection

0
Node 10 8
2
0
0

Freedom vector

Figure 4-3-3 Example of the freedom vector with rigid floor assumption
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(2) Including wall element

The wall element model has rigid beams at the top and bottom of the wall, therefore, as shown in Figure

4-3-4, the rotation angles in the wall panel plane, 9y1 and Hyz, are dependent to the vertical

displacements, ¢,, and J,,. Also, the horizontal displacement in the wall panel plane, u,,, is

dependent to the displacement, U, . The connection is assumed to be rigid.

0,
4
Hyl A
i 0. =6 _522_521
yl. = Yy2 — W
521 522
e uxl sz uxl = u><2
................. ' Sleererarnrananet’ :
'

Figure 4-3-4 Relationship between node displacements for a wall element (X-wall)

In a matrix form;

Uy, 1 0 0 [|uy,
0,r=|0 -1l/w 1/wiKd, (4-3-2)
0,, 0 -1l/w 1/wl||o,,

In case of Y-direction wall, the relationship can be written as;

u 1 0 0 u

yl y2
O0,r=|0 1w -1/w|jo, (4-3-3)
0,, 0 /w -1/w||o,,

HXZ

522

/2 W

Uy,

Figure 4-3-5 Relationship between node displacements for a wall element (Y-wall)
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For example, in case of the structure in the figure below, by eliminating dependent freedoms, the total

number of freedom becomes 17.

0
Node 1-5 :
0
0
0
1
2
Node 6 0
0
0
0]
0
0
3
Node 7 4
0
0 o 1y I@
0 1
8 105
0 8 9
{5 4 X
Node 8 9 i @
0 1 2
g 777775 /e
0 3 ~ 4
10 777 777
Node 9 11 Z 77
12
0
13
%g V') shear deformation of connection
16
0
Node 10 8
17
0
0

\ /

Freedom vector

Figure 4-3-6 Example of the freedom vector with a wall element
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(3) Series of walls

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams
at the top and bottom. Therefore, as shown in Figure 4-3-7, the rotation angles in the wall panel plane, Gyl
and Hyz,

the wall panel plane, Uu,,, is dependent to the displacement, U,, . The connection is assumed to be rigid.

are dependent to the vertical displacements, J,, and ¢,,. Also, the horizontal displacement in

O

0., - /Fﬁ

A
521 u 522
g x i UXZ
P R T
Wl
§ZN _521 N
O, =0,==0, ="M "2 | =N,
L a

uxlzuxz :'“:uxN

Figure 4-3-7 Series of wall connected by a rigid beam (X-wall)

In a matrix form;

%)
0,=[-1L 1/Lk * (4-3-4)
g 5ZN
521
s, =[l-L/L L/L s (4-3-5)
ZN
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In case of Y-direction wall, the relationship can be written as;

Hxl

0y =0,-0,L; = (1_ L /L)§zl +(Li /L)§ZN , L= zWi

k=1
uyl :uyz :“':uyN
Figure 4-3-8 Series of wall connected by a rigid beam (Y-wall)
In a matrix form;
521
6,=[/L —1/L] (4-3-6)
52N
521
s, =l-L/L L/L (4-3-7)
5ZN
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(4) Including ground springs

In case there are ground springs (sway and rocking springs) at the basement of the building, the floor
diaphragm of the basement is assumed to be rigid for both in-plane and out-of-plane deformation and the

freedoms other than sway and rocking freedoms are restricted at the center of gravity.

3
Vs sy ¥
2
(a) Sway freedoms (b) Rocking freedoms

Figure 4-3-9 Freedoms of ground springs

In case of the structure in the Figure below, by eliminating dependent freedoms, the total number of

freedom becomes 21.
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0
Node 1-4 :
0
1
2
3
Node 5 1
0
0
0
0
0
5
Node 6 6
0
0 6 Iﬂ 7 L)
0 )
8 105
0 8 9
7 Al S
Node 7 8
0
0 1 2
< 0 ¢
0
0
0
9
Node 8 10
11
0
12
13
0
0
14
15
Node 9 16
0
17
18
19
20
8
Node 10 0
21
0
0

Freedom vector

Figure 4-3-10 Example of the freedom vector with ground springs
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4.4 Transformation matrix of dependent freedom

In case of rigid floor assumption, Equation (4-3-1) expresses the relationship between dependent freedom

and independent freedom, that is;

uxA 1 0 IyA uxG
Uar=]0 1 =1, KUy
0., 0 0 1 [0,
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

k [ m
/ b o) s
Uyn 0 1 =l
Om| _ Ug | &
0.5 Ug | /
O, e
0,, 0 0 I O,
O
Oc| m

Iz _ _

Dependent freedom [T] Independent freedom

Since the most components of the transformation matrix, [T,], are zero, the components of [T,] are

remembered using two matrices, [N,] and [F,].
[N| ]= / ; Matrix for independent freedom numbers

[FI ]: i : Matrix for transformation components from independent freedoms

It will reduce the memory size dramatically.
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In the same way, for the case of including wall elements, Equation (4-3-2) expresses the relationship

between dependent freedom and independent freedom, that is;

Uy, 1 0 0 ||u,,
Hyl =0 -1/w 1/w 5y1
0y2 0 -1/w 1/w 5y2
Dependent freedom Independent freedom

It can be arranged into the transformation matrix between the freedom vectors of all nodes;

2 q r

Uy, ) 1 )
Vi 6)yl _ 1/ A} 0 11 W 5y1 P
0,, -1/w 0 1w U, | g
5y2 r

I _ _

Dependent freedom [T.] Independent freedom

The components of two matrices, [N,] and [F,] will be;

[N | ] =J ; Matrix for independent freedom numbers

[FI = J ; Matrix for transformation components from independent freedoms
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Initial conditions of [N,] and [F,] are:

In Figure 4-4-1 (rigid connection), the element node displacement vector of the beam element between
Node 8 and Node 9 is,

O, 55 O (4-4-1)

y8 y

{uz8 uzg 0
Those displacements correspond to the location numbers in the freedom vector as;

{Uzg Uy O O Oy 5X9}T = {45 51 47 53 43 49} (4-4-2)

Node 1-5

Node 6 33

Node 7 39

Node 8 45

NN
o
OOV NOOOOOUIRAOOOWNRFRPOOO O

Node 9 o1 10 1 Z

Node 10 58| 0 v

60| 15 (rigid connection)

Freedom vector

Figure 4-4-1 Example of location matrix for beam element
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From rigid floor assumption, the components of independent matrices, [N,] and [F,] will be;

43155 60 O 43 |1 |y8 0
45145 0 O 4511 0 O
47147 0 O 4711 0 O
[Nl]: ' [FI]: (4-4-3)
49155 60 O 4911 |y9 0
51(51 0 O 5111 0 O
53|53 0 O 53|(1 0 O

From the matrix, [N, ], the freedoms of (43) and (49) are replaced to the independent freedoms (55) and

(60). Therefore, the independent location numbers and freedom numbers of the beam element are:

y8 9y9 5x8 5x9}T
= {45 51 47 53 43 49}
= {45 51 47 53 55 60} ; independent location number

T
8 uzg eyB eyg uxlO Hle}

{UZS uzg 9

—

z

={5 8 7 10 11 13}"; freedom number

(4-4-4)
The transformation from independent displacements (= global node displacements) to element node
displacements is obtained from the matrix, [F, ], as follows:

u 28 1 O u z8 u 28

u 79 l u 79 u 79

0 1 o 0

HV‘* - . gyg =[Toe K HVB (4-4-5)
y9 y9 y9

5)(8 1 I y8 u x10 u x10

é‘>(9 _O 1 yo | 0210 0210
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4.5 Stiffness matrix corresponding to independent degrees of freedom

The constitutive equation of the beam element and formulation of global stiffness matrix from element
stiffness matrix are shown below:

5 8 7 10 11 13

P S _k5,5 ss Ks7 Kepo  Ksyy Kegg | Usg
P 8 Kes Ko7 Kepo  Kein  Kggs || Ugg
M y8 | _ 7 k7.7 \k7,11 K713 9y8
M y9 10 10,10 k\lﬁ,n\ k10,13 0 y9
leo 11 sym. k11,11 \‘L<11,13 U0
M, 13| ki ) (0,10

)\\ Locate element stiffness

1 1 \
Element stiffness matrix °, according to the freedom number

12345 6 7 8 ‘9 10 11 12 13

1 \ |
\
2 \
3 \
1
4 \
]
S Ks 5 Kss Ksg k‘\5,10 Ks .11 Ks 13
6 v
7 kiz Kig K711 K713
8 8,8 Koo Kgus Kg .13
9
10 Kioso  Kios Kio13
11 sym. k11,11 I(11,13
12
13| Kis.3 )

Global stiffness matrix

Figure 4-5-1 Formulation of global stiffness matrix

In general, the transformation from independent displacements (= global node displacements) to element
node displacements for the X-beam is described as Equation (2-1-13).
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u ZA
uzB u1
0 u
M= @113
05 :
§XA u n
S

Pl l'll
P u

=Kk 2 (2-1-20)
P u

Using the same procedure in Figure 4-5-1, the element stiffness matrix is added into the global stiffness

matrix.

4.6 Mass matrix corresponding to independent degrees of freedom

Mass is assigned in each node. The inertia force at the node will be also transformed according to the

transformation of the variables. Here, the rotational inertia at each node is ignored.

(1) Rigid floor assumption

MG
=
PxG
G
PyG
/e 77777
/a a 7 7
The inertia force at the node A is
PxA mAUXA rT]A O O l.'ij
Pap=9—Ml,r=— 0 m, Ofl, (4-5-1)
0 0 0 0 0]|6,
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Under the rigid floor assumption, the in-plane freedoms at the nodes in a floor are represented by the
freedoms at the center of gravity of the same floor. Therefore,

G| 110 e 10 1,
uyA =0 1 _IxA UyG :[TA] UyG ,[TA]: 0 1 _IxA (4-5-2)
0,, 0 0 1 O 0, 00 1
G: center of gravity
G P>
IXA
I,

A Al—vaA

P
On the other hand, the inertia force at the center of gravity is calculated as, A
Pe Pa 1 0 0P, Pa
T
Pe = Pe =0 1 O0|\Pe¢= [TA] Pe (4-5-3)
M, IyAPXA — IxAPyG IyA -1, 1|/ O 0
Therefore,
Pe 1 0 O|[P, m, 0 Of|U,
Per=[0 1 O0|iP,r=—[T.]| 0 m, 0iu,
Mgo| [la -l 1 0 0 0]|6,
(4-5-4)
m, 0 O U m, 0 l,,m, U,
T .. ..
=—[T,] | 0 m, O|[T]qlr=—| O m, -l ,m, Uy
0 00 O, Lam, =Lam, (12 +12)m, | O
If we ignore the off-diagonal components,
Pe m, O 0 U
Pe ¢=—] 0 m, 0 Uyg (4-5-5)
MZG 0 0 mA(IfA-i—I;A) ezG
Taking the sum of the inertia force from the all nodes at the same floor,
Pe ms 0 0 [[Ug " "
Pep=—| 0 mg 0 [{tigp, me=>m, Ig=> m(IZ+17) (4-5-6)
M G 0 0 IG ”ZG I I

where, N is the total number of the nodes at the floor.
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(2) Including rigid beam

The wall element model has rigid beams at the top and bottom of the wall, and the horizontal displacement
in the wall panel plane, U,,, is dependent to the displacement, U, .

The inertia force after transformation is

P4 rlm O U, m+m, 0|0,

{P }:[T] {o m a7 o0 ofla

X2 2 X2 X2
Therefore, the horizontal mass is

le = (ml + mz)uxl

le sz le
4’ H
1 ¢ m, 2| M Lm +?n2 >
/e /za 7 /Za

On the other hand, the vertical mass is the same as before.

)
N
U
N
U
)
N
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(3) Series of rigid beams

In case several walls are joined together in series, it is assumed that all walls are connected by rigid beams

at the top and bottom.

The all horizontal displacements at the nodes are dependent to the horizontal displacement of

the first node, U, .

uxl =ux2 :"'zuxN
Also, the vertical displacement at the middle node J,; is dependent to the vertical displacements of

the nodes at both ends, §,, J,.
5zi = (1_£j 521 + (hj §ZN
L L

Therefore, the horizontal mass is

N
le:(m1+m2+---+mN)l'jxl:(Zmij(jXl

m, +---+my
le I:)xi I:)xN N x1
[ = o— .m—> =
1| M i | M N[N 1 N N
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The vertical mass is

PZN
/e

le
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5. Equation of motion

5.1 Mass matrix

In the default setting, the mass at each node is identical and equally distributed as

M. :LM

i floor
floor

(5-1-1)

. total number of nodes in the

where, M, : mass at the node i, M, : total mass of the floor, N, :

floor *

floor.

However, you can change the mass at each node depending on the place of the node by setting “proportion
to influence area” in Option Menu. In this case, the mass at each node is determined from the following

equation:

M. :LM

= A (5-1-1)

floor
floor

where, A, : influence area of node i, A, : total area of the floor. Influence area of the node is different

floor

depending on the place of the node as shown in Figure 5-1-1.

> X Q o yy > X
I
A Mi Aj, My liy
Gvy
< B Is
k le MG
Ak, Mk
v v G : center of gravity of the floor
Y Y
(1) Influence area of the node (2) Mass and rotational inertia at G

Figure 5-1-1 Mass and rotational inertia at the node

The process to determine the mass based on influence area is as follows:
Step 1. Calculate the slab area (block with cross mark)

Step 2. The area of the block is divided equally to the corner nodes. (Figure 5-1-2)

Step 3. If there is no corner node, the area is divided equally to the all nodes in a floor. (Figure 5-1-3)
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Figure 5-1-2. Influence area of the node (red)

Figure 5-1-3. Distribution of the rest area

Example)  Floor weight = 700kN

700kN/8 50kN+12.5
= 87.5kN 87.5kN = 62 5KN 112.5kN

87.5kN 112.5kN
87.5kN

62.5kN

87.5kN 87 5kN 62.5kN

112.5kN

87.5kN 87.5kN 62.5kN 112.5kN
(a) Same for all nodes (b) Proportional to influence area

Figure 5-1-4 Example of mass distribution
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In case of rigid floor assumption, in-plane freedoms at the nodes are dependent to the freedoms at the
center of gravity of the floor. Therefore, the mass at the center of gravity, M, is,

M G — M floor (5-1-2)

The rotational inertia at the center of gravity, I, along the z-axis is obtained from the following equation:
N

I =S M, (12 +12) (5-1-3)
i

where, N is the total number of the nodes at the floor. The rotational inertia at other nodes are,

l,=0, i=1---N (5-1-4)

The mass matrix is obtained as,

R o [ ]
0 :
u><i IVli Mi
uy, M; M,
[M]_ézi MI — I\/Ii
_exi Ii Ii (5-1-5)
0, I, I,
ezi Ii Ii
0 .
_0 0 . - - -

Since the mass matrix has only diagonal components, those components are saved in one-dimension vector.
For example, the mass vector of the structure in Figure 5-1-5 will be as follows:

M 6
Node 6 0
M 7
Node 7 0
M, Iﬂ
: g
Node 8 0 105
M, 8 9
0 D NP
Node 9 0 1 2
M,, 77 e
10 3 7 4
Node 10 (P e 77777

Figure 5-1-5 Example of mass vector
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In case a complete rigid floor such as a foundation slab for the ground springs, we need to calculate the

rotational inertia at the center of gravity along each axis.

—»> N

E

/

c
Y
The rotational inertia along Z-axis is
a
b \ k—’ X

Y

In the same way, the rotational inertia along X-axis is

_ M 2 2
I, _E(b +c?)
The rotational inertia along Y-axis is
_ M 2 2
l, _E(a +C )

a
I - ZdV_a/Z b/2 c/2 M , , ddd
e V(0 R
M al2 b/2 c/2 al2 b/2
:_[ I xzde' dyj dz + I dxj' yzdyj' dz
abC —-al2 -h/2 —c/2 —-al2 -b/2
:lm(a2+b2)
(5-1-6)
(5-1-7)
(5-1-8)

c/2

—c/2

|

If the mass is located at each node, as already mentioned, the rotational inertia at the center of gravity, g,

along the Z-axis is obtained as

L, =[pridv =3 M (1,7 +1,?)  (5-1-9)

v

Mi

A

Svo

o) o<
A
o
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5.2 Stiffness matrix

As shown in Figure 4-4-2, the global stiffness matrix [K] is formulated from element stiffness matrices.

8

0 .o

9
y8

y9

o < Z

10

<

z10

10
11
13

5 7 10 11 13
_k5,5 k5,8 k5 7 k5,10 k5,11 k5,13 | u28
k8,8 k8,7 k8 10 k8,11 k8,13 uzg
k7.7 \k7,11 Kz || 045 |  Example of beam element
10,10 \16,11\ k10,13 Hyg
sym. Kyg 11 \‘K11,13 Usio
ki ) (0,10
)\\ Locate element stiffness
Element stiffness matrix \\ according to the freedom number
.
1 2 3 45 6 7 8 \\\\9 10 11 12 13
1 \
2 \\\
3 \
'
4 \
S k5 5 k5 7 k5 8 k“\5,10 k5,ll k5,13
6 v
7 Koz Kig k7,11 713
8 k8,8 k8,10 k8,11 k8,13
9
10 |(10,10 k10,11 k10,13
11 Sym' 1111 11,13
12
13 B k13,13 A

Global stiffness matrix

Figure 5-2-1 Formulation of global stiffness matrix
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5.3 Modal analysis

1) Eigen value problem

The free vibration equilibrium equation without damping is

M fai}+ [K Ju} = {0} (5-3-1)

where [K] is the stiffness matrix and [M ] is the mass matrix in the form;

m 0 0
0 e 0

M]=| m;z S (5-3-2)
0 O m

The solution can be postulated to be in the form

uj=1pje (5-3-3)

where {(/5} is a vector of order n, @ s a frequency of vibration of the vector {(/5} .

Substituting into the equilibrium equation, the generalized eigen problem is obtained as,

[KRg} = w?[M Jig} (5-3-4)

This eigen problem yields the 7 eigen solutions (a)f,{ 1}), (a)zz,{ 2}),---, (a)z,{¢n }) where the

n
eigen vectors are M-orthonormalized as,

(41 [M][6) =2 Mg =0 ;%] 525

o.u)
Let’s assume two different set of eigen solutions (a)iz,{¢i }), (a)jz,{gzﬁj }) :
Form Equation (5-3-4),

@) (<) =8 ([<{g})=a? (4} M]{g)) (5-3-6)
Since [K] and [M] are the symmetric matrices,
) (KNt =19 }T ([K]{g}) =14 }T MI{g} =07 {a) [M]{4} (5-3-7)
Subtracting Equation (5-3-7) from Equation (5-3-6),
(@ o) {4} [M]{g,} =0 (5-3-8)

Since @, # ;, we obtain Equation (5-3-5).
The vector {(éi} is called the i-th mode shape vector, and o, is the corresponding frequency

of vibration.
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2) Modal decomposition of equilibrium equation
Defining a matrix [d)] whose columns are the eigenvectors and a diagonal matrix [Qz]

which stores the eigenvalues on its diagonal as,
2
w,

=) ) - Wl Rl 529

2

Wy,

We introduce the following transformation on the displacement vector of the equilibrium
equation (5-5-2):

{u®}=[®]{a®)} (5-3-10)
Then,
[M][e]{d}+[C][@]{a}+[K][®]{a}={P} (5-3-11)

Multiplying [(D]T ,

o] [e}{a}+[o] (c][o]{a}+[o] [K][o}(a}~[o] (P} 5312
where
el Mfol=[M]=| ™ .| m={a) M) 6313)
lzl —
[o] [K][e]=[o][o] [M][e]=[0][M]= =[K]. k=om
3
(5-3-14)

A damping matrix that is diagonalized by [d)] is called a classical damping matrix.

[o] [C][®]=[C]-= i (5-3-15)

Cn

where, [I\W] [C} and [IZ] are called generalized modal mass, modal damping and modal

stiffness matrix, respectively.

320



Therefore,
[M J{a}+[C{a}+[K {a}=[@] {P} (5-3-16)
It can be reduced to n- equations of the form

M, (1) + €6, (1) + kg (1) = 1. () (5-3-17)

X, (1)
where r,(t)={g} {P()}=—{g} [M][U ]{Y‘O (t)} (5-3-18)
Z,(1)

By setting C, /M, =2h@ and k /M =’

X,(t)
G, (t) + 2h oG, (1) + g (1) = _{ﬁl }T lYo(t) ] = _{ﬂi,xxo(t) +ﬂIyY0(t) +ﬂi,xzo (t)}
Z,(t)
(5-3-19)
where
el MUl MGy s R
R T Y B PTA ) Y A
g M), R
ST TPy o

Bixy. is called “participation factor” of i-th mode.

Bixy. 18 the coefficient when you decompose the vector {nyyyz} into mode vectors as,

Use) =[@NBey} = gﬂi,x,y,z 14} (5-3-22)
)

Multiplying [®] [M],

[©] [M){U, .} =[@] [M][@}{B,.}=[M}{A,,.} (5-3-23)
Therefore,

(Bt =[MT (@] [M){U,,.} (5-3-24)

It is equivalent to Equation (5-3-21).
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Equation (5-3-17) can be decomposed again as,

% (1) + 2hao % (1) + 0%, (1) = =X, ()
Y, (1) +2h @y, (1) + 0y, (1) = _Y“o (t) (5-3-25)
Z (1) +2h@ 2, (t) + 0z, (t) = —Z, (t)

and
q (t) | x N (t) + ﬂ| yy| (t) + ﬂ| zZ| (t) (5'3'26)

Therefore, the displacement vector is obtained by superposing displacement responses of

single-degree-of-freedom (SDOF) systems in each mode and each direction as,

wm)=[0]{q®m! = (41, 1) = Zﬂ.x x(t)+2ﬂ.y y.(t)+Z/f.z 12,(t)

i=1

(5-3-27)
B..{¢} is called “participation vector” of i-th mode in x-direction.
3) Effective modal mass
The kinematic energy of the vibration is calculated as,
1. .07 .
E ZE{u(t)} [M]{u(t)} (5-3-28)

For simplicity, only the x-directional response is considered. Then, mode decomposition of the

velocity vector is
o =[e}{a®} Zﬂ.x § % () (5-3-29)

Substituting into equation (5-3-28), we obtain

. T . 1. . .
E=Z{a()f [MI{u(v)} = {6 [o] [M][o]){aw)} = (4o} [¥ )

1 .o 1 L 1 N

:_( 12m1)X12 +E(IB22m2)X22 +"'+§(ﬂnzmn)xﬁ

o 1 , 1 .
:_me,lxlz -i_zme,zxzzZ -’_“'_'—Eme,nxr:1Z

(5-3-30)

where m,; = B, is called the effective mass.

That is, the kinetic energy of a structure can be decomposed into the sum of the Kinetic

energies of one-degree-of-freedom systems with effective masses in each mode.
1 ,
E=e, +e,++6€,, €,=-m,X (5-3-31)

e, 2 e,i N

Therefore, when determining which vibration mode is dominant, the ratio of effective mass to
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total effective mass
(5-3-32)

k=1
is sometimes used. This is called the effective mass ratio.

In addition, the following relationship holds.
A (011 RPN (114 (0 ) N
WM =AM AL MU =S e
, , (5-3-34)

4) Equivalent one mass model
If we consider the first-order mode to be dominant in a multi-story building, the displacement
(5-3-35)

distribution is expressed as,

{u®)} =B {a}x )

If we consider that the response is harmonic near its maximum value,
(5-3-36)

{U(t)} = ﬂl {¢1} S’Deiwlt

where S, is the displacement response spectrum of the first mode.

1 ===
[ i
1
I i
1
| !
! 1
! 1
I N
! ]
- ¥ U =Lp.S
" 1 i 1¢1,I D
1 I’
! 1
+
] N
! 1
1
h 2 !
! 1
! 1
1
1
I
f j
! i
|
U

The acceleration response is
(5-3-37)

{U(t)} - (_a)lz )131 {¢1} Spe™ =4 {¢1} S,

where S, =S, is the pseudo acceleration response spectrum of the first mode, and J, is

the participation factor of the 1st mode defined in Equation (5-3-21) , that is,
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(5-3-38)

2
rni¢l,i
i=1
n
» T
| I '
1 ! 1
\ > l' | m
\ ! ,' e
\ ! 1
\ > ! 1
v 1
1
‘\ [ / —  So 3
\ U
- 1 |-
T , » U /
\ ! f i
\ ” ! /I
\
P’\ l, ,’ II
\ ! II ! H e
\ II 2 h I/
= — N /
\ ! '
1 p—
\"P ; 1 J ( / \ MB - HemeSA
1
1 h ! =
< Il ,' QB 4—4— QB meSA
v
1 |

Besides the energy-based definition, the effective mass, m,, can be defined from the condition
(5-3-39)

that the base shear, Q;, is equal in the two models. The base shear of the multi-story

building balanced by the inertia forces of the upper floors is
n n n
QB = _Z miui (t) = Z m (ﬂlSA¢l,i ) = ﬁl (Z mi¢1,i J SA
i=1 i=1 i=1
The base shear of the SDOF system is,
Qs =M,;S, (5-3-40)
Therefore,
n 2
>
(5-3-41)

n

me, = 181 (Zn: mi¢1,i
= Z mi¢1,i2

The effective height, H_, is obtained from the condition that overturning moment at the base
of the building, Mg, is equal in the two models. The overturning moment of the multi-story

]

(5-3-42)

building is
Mg = Zn:miui (t) H; = Zn:miHi (ﬁlSA¢1,i ) =5 (Zn: miHi¢1,ijSA
(5-3-43)

i
The overturning moment of the SDOF system is,

Mg = He,l(me,lsA)
324



Therefore,

ﬂl(imi Hi¢1,i) Zn:mi Hid,

He,l

n

Mea zl mid,

The displacement of the representative point is defined as

imiuiz Zn:mi (ﬂ1¢1,iSD)Z imi¢12,i
Ay = Ll =1 =B |:1

imiui imi(ﬂl@,is,)) > mé,

It is consistent with the displacement response spectrum.

SD:SD

Also, the acceleration response spectrum is obtained as

- Zm¢
" (Sma )

5) [Initial condition

S,=

7 Qe

The initial conditions are obtained from Equation (5-3-10) as,
[©] [M]{u} =[] [M][@]{a®)}=[M J{a®)

Therefore,

(@) o =[M] [T MI{u} . {8}, =[M] [@] [M]{u},
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5.4 Damping matrix
In STERA 3D program, the damping matrix is formulated in the following way:

1) Proportional damping

The mass-proportional damping and the stiffness-proportional damping are defined as,
[C]=a,[M] and [C]=a,[K] (5-4-1)

where the constants a,, @, have units of sec'? and sec, respectively.

For a system with a mass-proportional damping, the generalized damping for the i-th mode in
Equation (5-4-1) is obtained as,

c, =a,m;, ¢, /m; =2h (5-4-2)

Therefore,

a, —2ho, h-2l (5-4-3)
2 o,

Similarly, for a system with a stiffness-proportional damping, the generalized damping for the

i-th mode is,
¢, =aw’m, ¢ /m =2hao, (5-4-4)
Therefore,
2h. a
al =_1 , hi = —la)i (5'4‘5)
o, 2
hi
A

> @

In STERA_3D, you can select from the two types of stiffness-proportional damping.

One is the proportional damping using the initial stiffness matrix:

c1-2"K,] (54

1
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where, h: damping factor, ; : circular frequency of the first natural mode, [KO]: the initial stiffness.

Another is the proportional damping using the spontaneous stiffness matrix
2h
KF;;WJ (5-4-7)

where, h: damping factor, @, : circular frequency of the first natural mode, [KpJ: the spontaneous
stiffness changing according to the nonlinearity of structural elements.

In the scene of the practical design of Japan, it is common to use the proportional damping using the

spontaneous stiffness matrix.

2) Rayleigh damping

A Rayleigh damping matrix is defined proportional to the mass and the initial stiffness

matrices as,

[C]=a,[M]+a,[K,] (5-4-8)

The modal damping ratio for the i-th mode is,

-l &, (5-4-9)
2 o 2

The coefficients a,,a, can be determined from specified damping ratios h;, h, modes,

respectively. Expressing Equation (5-4-9) for these two modes in matrix form leads to:

1 1o o |la, _ h, (5-4-10)
2|llow, o,||q h,

Solving the above system, we obtain the coefficientsa,, a, :

_ 20,0, (a’lhz — W, hl)

O (wlz - ‘022)
(5-4-11)
a = z(a)lhz _a’zhl)
' 0)12 — 6022
h,
4
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3) Damping matrix with a base isolation building
In an actual design practice for the base isolation buildings, it is common to assume zero viscous damping
for horizontal components of the base isolation floor. For example, in case of the stiffness-proportional

damping, the damping matrix is defined as:

2h
[C]:;([Kuppe,}r[KBw}) (5-4-12)
where,
[Kupper J: the stiffness matrix consisted with upper structures without base isolation elements,

[KB, v ] - the stiffness matrix of base isolation elements for vertical components.

4) Damping matrix with viscous damper devices
If there are some viscous damper devices in a structure, in addition to the proportional damping matrix, the

global damping matrix formulated from element damping matrices are considered as:

[c]=Ic,. ]+[c,] (5-4-13)

where, [C J: the proportional damping matrix, [CV]: the global damping matrix formulated from

pro

element damping matrices in the same manner of the global stiffness matrix.
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5.5 Input ground acceleration

Earthquake ground motions are defined as three components acceleration; XO, Y"0 and ZO, inX,YandZ

directions. The inertia forces at node i are defined as,

—Mi(u;i+>'<'0) 0.

i~z zi

Xi 1 00 i
-M i (uy| + Yo) U:.yi 010 X U‘-.yi X
- M i (§Zi + ZO) _ _[M ] 5zi _ [M ] O O 1 Y--O _ _[M ] 5zi _ [M ][U] Y..O (5_5_1)
- Iiéxi éxi 000 z’o éxi Z‘O
- Iié:yi é.yi 00 0'° é_yi 0
—1,0 0 000 i

For example, the components of the matrix [U ] of the structure in Figure 5-5-1 will be as follows:

Xo Yo Z,
[0 0 1]
Node 6 0 00O
001
Node 7 0 0O
001 [ﬂ
000 5 W) 7IQ
Node 8 0 0O 105
001 8 /9
00 0 J e
Node 9 0 0O 1 2
100 77/77”5 vz
010 3 7 4
Node10 |0 0 O] Y e 77777

Figure 5-5-1 Components of the matrix [U ]
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Equilibrium condition of the structure under earthquake ground motion is:

X,
[CJfuf+ [KJuj =M Haj-[MJU] Yy
e Z,
Damping force / N Y _
Restoring force Inertia force

Finally the equation of motion is obtained as:
M faj+[Cluj+ [KRuj=-[MJU Y = (P}

Zy

330

(5-5-2)

(5-5-3)



5.6 External force by vibrator

A vibrator is assumed to be located at the center of gravity at a certain floor. The external forces from the

vibrator are denoted as F,, F, in X and Y directions.

110

Fl |01

0| _[0 0 {FX}=[V]{FX} 56)
o[ |0 0||F F,

0| |0 0

0| |0 0

For example, the components of the matrix [V] of the structure in Figure 5-6-1 will be as follows:

FF
0 o
Node 6 0 0
00
Node 7 00
00 [ﬂ
0 0 5 W) ! Iq
Node 8 00 105
00 8 / 9
0 0 D PR
Node 9 00 1 2
10 77 v/
Node 10 |0 O] Y e 77777

Figure 5-6-1 Components of the matrix [V ]
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Equilibrium condition of the structure under vibrator force is:

(o} (<)) =i o) £ | s2)

y
[ — [ — [ —

/
Damping force / \
Inertia force

Restoring force External force

Finally the equation of motion is obtained as:

QEECONBIENIGEE 669
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5.7 External force by wind

A wind force is assumed to be applied at the center of gravity at each floor with the constant distribution
along the height of the building. The external forces at i-th floor from the wind are denoted as

h F(t),hF, (), h M, (t) inX,Y horizontal directions and Z rotational direction.

\J;> \\\\\
Figure 5-7-1 Wind force distribution
h,.F, (t) h;, 0 0
hy,l l;y (t) Fx (t) 8 hél 8
=Wl R (@) [W]= (5-7-1)
0 y 0 0 O
0 M. (t) 0 0O O
h.:M, (t) 0 0 h;
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For example, the components of the matrix [W] of the structure in Figure 5-7-1 will be as follows:

F, Fy M,
[0 0 0 |
Node 6
0 0 0
0 0 0
Node 7
0 0 0
0 0 0 6 Iﬂ 7 I@
0 0 0 1
Node 8 10
ode 0 0 0 S
8 / 9
0 0 0 ] NP
Node 9 g 8 8 1 2
777 /e
hX'l 0 0 5
0 h, O 3 ” 4
Node 10 _ 0 0 hr‘l_ 77777 77777

Figure 5-7-2 Components of the matrix [W |
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Equilibrium condition of the structure under wind force is:

[Cl{uj+[K]{u} =-IMI{u} +[W]} F, (5-7-2)

—_

Damping force \
Inertia force

Restoring force External force

Finally the equation of motion is obtained as:

F

(M {0} +[C]u}+[K] o) = (Wl F, L= (P} 579
W

z
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5.8 Numerical integration method

Two numerical integration methods are prepared; one is the Newmark-B method with incremental
formulation using a step-by-step stiffness matrix, and another one is the Force correction method using a
step-by-step stiffness and a force vector together. In case it is difficult to define the step-by-step stiffness of

the element such as the case of using a viscous damper element, the Operator Splitting method is selected.
a) Equation of motion and its incremental form

The equation of motion of a structural system is written as,
[M{aj+[Cl{vi+[K]{d}={p} (5-8-1)
where, [M], [C] and [K] are the mass, damping and stiffness matrices. {d}, {v}, {a} and {p}

are the displacement, velocity, acceleration, and external force vectors.

The incremental formulation for the equation of motion is,
[M]{Aa}+[C]{Av,} +[K]{Ad,} = {Ap,} (5-8-2)

where, {Adi}, {Avi}, {Aai} and {Api} are the increments of the displacement, velocity, acceleration,

and external force vectors, that is,
{Adi } = {di+1}_ {di } {Avi } = {Vi+1}_ {Vi}' {Aai } = {ai+1}_ {ai } {Api } = {pi+l}_ {pi} (5-8-3)

In case of a system with hysteresis nonlinearity, the equation of motion can be described as,
[M]{a}+[Cl{v}+{f (d)}={p} (5-8-4)
where f (d) is the force as a nonlinear function of the displacement {d} . The incremental form can be,

[M]{Aa }+[C]{Av,} +{Af (d)} ={Ap,} (5-8-5)

In a small time-increment, it can be assumed as a linear relationship in force-deformation as shown in
Figure 5-8-1,

{Af,(d)} =[K;]{Ad,} (5-8-6)

Finally, the equation of motion in incremental form is the same as Equation (5-8-2), that is

[M]{Aa}+[C]{Av,} +[K, ]{Ad, } = {Ap,} (5-8-7)
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Figure 5-8-1 Nonlinear force-deformation relationship

In the initial condition, the building will deform under the gravity load, i.e., the dead and live loads. It can

be analyzed by solving the following equation,

Xo
[M1{a} +[C]iv} +[K]{d} =~ [MJU]] Y, (5820
Zo_g

where @ is the gravity acceleration. When the gravitational acceleration is initially applied, the response
may fluctuate in the beginning. Therefore, it is better to apply the static gravity force {fo} instead of

acceleration as,

X, 0
[MH{a}+[CHv}+[K]{d} ==[M]U3 Yo (+{fe}. {fo}=—[M][U]50 (5-8-27)
Zy g

and set the initial displacement as {d} ={d,}, where {d,} is the solution of

[K]{do}={fo)

The incremental form will be
AX,

[M}{aa}+[Cl{Av }+[K {ad; } =-[M][U] AYo
AZ

0
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b) Newmark-g method

The incremental formulation for the equation of motion of a structural system is,

[MRaa }+[CHAv b+ [KKAd, |- {af } = {Ap;} (5-8-1)

where, [M], [C] and [K] are the mass, damping and stiffness matrices. {Ad,}, {Av,}, {Aa,} and
{Api} are the increments of the displacement, velocity, acceleration and external force vectors, that is,

{Adi}E{diH}_{di}' {Avi}E{ViH}_{Vi}’ {Aai}E{aHl}_{ai}' {Api}E{pi+l}_{pi} (5-8-2)

{Af } is the unbalanced force vector in the previous step.

Using the Newmark-f method,

(B} ={0)+ 0} 00+ 5 Jfa} 0 + £} (562
i =tud+ 3 (@) +a ) () 564
The incremental form is
{ad }= v a0+ > o, ot + plaa e 559
{Av; = fa, j(at)+ { Jat) (5-8-6)
From Equation (5-8-5), we obtain

1 1 1
{Aa }= W{Adi }_M{Vi }_ﬂ{ai} (5-8-7)
Substituting Equation (5-8-7) into Equation (5-8-6) gives
fav, = ﬁ{mi }—%{vi " [1_ %j{ai (a) 569)

Equations (5-8-7) and (5-8-8) are substituted into the equation of motion, Equation (5-8-1), and we obtain

1
) ket el )

-t ] s e ] e o2 e )

(5-8-9)
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The equation can be rewritten as,

K] -{ad, ) = {ap,} (5-8-10)

where,

[K]= [K]+ Zﬂ%At)[C]JF ﬂ(it)z [M] (5-8-11)

= o I s o e o b 2 )
(5-8-12)
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¢) Operator Splitting method

The Operator Splitting (OS) method is a type of mixed integration method in which stiffness is divided into
linear and nonlinear (Nakashima, 1990). The explicit predictor-corrector method is employed for the
integration associated with the nonlinear stiffness, whereas the unconditionally stable Newmark-f3 method

is used for the integration associated with linear stiffness. The formulations are described as follows:

Using the Newmark- method,

(4] :{di}+{vi}(At)+(%— ﬂj{ai}(At)z < pla)(at) (5-8-13)
{va} =} + 2 (fa )+ fa)) (a0 5814

Introducing the predictor displacement {CTM} as,

(@) ={d}+ {vi}(At)+(%— ﬂj{ai}(At)z (5-6-15)

= fu+ 5 fal (a0 (564

(5-8-13) can be written as

{dig)={d}+B{a.}(at) (5-8-16)

Therefore

{a. )= - 2({0‘”1}—{5”1}): L ~{Ad,.,} (5-8-17)
B(At) B(At)

where

{Ad f={d..} - {dm} (5-8-18)

Substituting Equation (5-8-17) into Equation (5-8-14),

() = gy 0ed o+ 1l (40 5819

In the equation of motion,

[M ]{ai+1} + [C]{Vi+1} "'{ f (di+l)} = { pi+1} (5-8-20)

[M ]{ai+1}+{ f (di+1’di+l)} = { pi+l}

The nonlinear internal resisting forces are approximated as follows:

UF(dia)f =[K]{dy} —{Af) (5:8-21)
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U (di)f = [Cl{via )} +[K]{di ) —{AF ]

where

(At} =[K]{d.a}~{ f(d.)] (5-8-22)

Force

[K]{d} «------ b

Af

{f(d)] fmmmmmmeoe o /o B Corrector

[K]{diﬂ} Dl E i
Af .
/ .

{f(dm)} NP " Predictor

[K] : : » Displacement

The nonlinear internal resisting forces can be written as,
{ f (di+1)} = |:K (d~i+l):|{Adi+l} +{ f (di+l )} (5'8'23)
where [K (dm)] is a predictor stiffness.

The predictor stiffness is not necessary to be the initial stiffness and if the predictor stiffness is close to the
tangent stiffness, the corrector force is more accurate. It is known that if the predictor stiffness is larger than

the tangent stiffness, the OS method is unconditionally stable.
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{ ( )} Corrector
f Cli+1 ‘ --------------

€ o ‘___E/[K(dwrl)]
{ f (dm)} Predictor

{dia) {di}

» Displacement

»

In STERA_3D, the predictor stiffness is created from the initial stiffness or tangent stiffness

if available.

Substituting the above equations into the equation of motion,

[M ]{ai+1} +[C]{Vi+l} +{ f (di+1)} = { pi+1} (5-8-24)
] 5 80 ] g b+ )

K () Jtad ) +{ £ (dua)) = {pa)

Solving for {Ad,,, },

| K [{ad,..}={p} (5-8-25)
where

. - 1 1
[K]:[K(di+1ﬂ+zﬂ(At)[CFﬂ(At)z [M] (5-8-26)
{p}= —[C]({V.}%{ai}(ﬂ)j—{ f(de)}+{pa} (5-8-27)

The procedure for solving the equation of motion is as follows:
Step 1.  Calculate the predictor displacement vector{am} by Equation (5-8-15).
Step 2. Obtain the restoring force { f ( dm)} in reference to the constitutive model.
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Step 3. Substitute {f(&iﬂ)} to Equation (5-8-27) and solve the displacement increment {Adm}
from Equation (5-8-25) and obtain the corrector displacement {d M} from Equation (5-8-18).

Under seismic excitation and gravity load, the equation of motion will be,

Xo,m
[M] e} L]0 [ F (8} =M Vo 5029
Zy;n—9

The initial displacementas  {d} ={d,}, where {d,} is the solution of
0

[K]{do}=-[M][U];0 (5-8-29)
g
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5.9 Energy
a) Equation of energy

As it was mentioned in Equation (5-5-2), the equation of motion is obtained as:
[mJu}+[Ct+ [ Jup= MUl Y, ¢ = {P} (5-9-1)

For example, in case of a structure with a rigid floor in Figure 5-9-1, the displacement vector, {u} consists
of 15 components (see RED numbers in Figure 5-9-1.)

ul
{u}= uf (5-9-2)
u15
1 4
6 [Q \,Ia , IﬂZ \,1@5
A 105 A U g 10
e 13
¢ ] = 8 I'd L
7 91" . 12
1 2
777 vz Ve T
3 7 4 7
e e Yz /7

Node number Freedom number

Figure 5-9-1 Example of the freedom vector of a structure with a rigid floor

The equation of energy is derived by multiplying the velocity vector, {u }T , and integrating by the time
range [0-t]:
t

[faf M faldt + [ ol ciulot + [ o) [K ikt = - o) (Pt 599

0
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BEMIE, oy oo 7KMoy pjon (5-9:4

W, +W, +W, =W, (5-9-5)

W, = M : Kinematic energy

t
W, = [{u}" [Cllujdt  : Damping energy
0

W, = uj" [K Ju} : Potential energy
2
t
W, = _I " {Pldt - Input energy
0

If the system is nonlinear, the equation of motion can be expressed as:
M Jia}+[Cluj+Qu.u)=—[M]uE Y, = {P} (5-9-6)

where, Q(u, U) is the nonlinear restoring force vector. Then, the equation of energy can be derived as;

W, +W, +W, =W, (5-9-7)
where,
AT .

W, = W : Kinematic energy

t
W, = J.{U}T [Cluldt  : Damping energy

X (5:9-8)
W, = I{u}T Q(U,U)dt : Potential energy

0
W, = _j {u }T {P}dt - Input energy
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b) Decomposition of potential energy

We can decompose the restoring force vector into the restoring force of each member as,

Q(u,u)=q,(u,u)+q,(u,u)+---+q,(u,u), n:number of members

Therefore, the potential energy can be decomposed as,

where

(u u)it potential energy of i-th member

=

'U
ov._,.-.

,-—'—\

\—«,-/
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6. Nonlinear Static Push-Over Analysis

6. 1 Lateral distribution of earthquake force

The static lateral load representing the earthquake force is applied at the center of gravity in each floor.
There are several formulas to define the load distribution along the height of the building. In “STERA 3D”
program, the following distributions are prepared:

1.Ai 2. Triangular  3.Uniform 4.UBC 5. ASCE 6. Mode

(1) Ai distribution

In the “Building Standard Law” in Japan, the design shear force of i-th story, Qi, is defined as,

n
Qi = Ci ij | Ci = ZRtAiCO (6-1-1)

j=i
where,

Ci: design shear coefficient of i-th story,

Wi : weight of i-th story,

Z: seismic zone factor,

Re: vibration characteristic factor taking into consideration of soil condition,

Ai: lateral distribution of shear force coefficient,

Co: design base shear coefficient (Co=0.2 for serviceability limit, Co=1.0 for safety limit)

If we set, Z=1.0 (Tokyo), R=1.0 (stiff soil, a short story building), Co=1.0 (safety design), the design shear
force distribution is simplified as,

Q=A ij (6-1-2)
j=i

“A;” distribution is defined as,

1 2T
A =1+ —=-¢ (6-1-3)
o 1+3T
I
where,
n n
a, = Wj/W, W = ij : the ratio of weight upper than i-th story,
j=i j=1
T: the first natural period of a building (=0.02A, A : the building height)

As shown in Figure 6-1-1, the static lateral load is obtained as,

I:n =Qn’ I:i =Qi _Qi+1 (I :11”"n_1) (6-1-4)
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_ 5= Cs (Ws + We)

|:> = | Q :Ciiwj

o w | C, = ZRAC,
(e _
F1=Q1—-Q2 E> Wi

ﬁ Q1= Cy (Wit Wz + ===+ W)

Figure 6-1-1 Ai distribution

(2) Triangular distribution
Triangular distribution is defined as:

n
Fi = QB(hi Zhj]
j=1
where,
Qs base shear force
hi: the height of the i-th story from the ground
A

l

I

he

-

ho
In

Figure 6-1-2 Triangular distribution
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(3) Uniform distribution
Uniform distribution is defined as:

F =Q;(/n) (6-1-6)

l

J

Fi

11

1

Figure 6-1-3  Uniform distribution

(4) UBC distribution
The UBC (Uniform Building Code, 1997) gives the following formula for the calculation of lateral force
distribution:

F = (QB -F {Wihi Zn:thjJ (6-1-7)

j=1

{ 0 ,if T<0.7sec
= (6-1-8)

0.07TQg ,if T >0.7sec

Ft q A

\
\

:> he

= ho
\\i Thl

Figure 6-1-4 UBC distribution
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(5) ASCE distribution
The IBC (International Building Code) in the U.S. refers to the ASCE 7 “Seismic Design Requirements for

Building Structures” which gives the following formula for the calculation of lateral force distribution:

F=wh/> wh (6-1-9)

j=1
where kis an exponent related to the structural period as follows:

1 : if T<0.5sec
k=4(T-05)/2 , if 0.5sec<T <2.5sec (6-1-10)

2 , if T>2.5sec

k=2 k=1
oo A
\\\\ \‘!:>i

.

g
//

AT

he

-
-
s

h
In

Figure 6-1-5 ASCE distribution
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(6) Mode distribution

Mode distribution is defined as:

F :QB(Wi¢l,i/in¢l,j] (6-1-11)

where,

@i component of the first mode distribution in the i-th story

Fi

Figure 6-1-6 Mode distribution
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6. 2 Capacity Curve

The Capacity Spectrum Method was proposed by Freeman [1978] as an approximate way to estimate the
maximum response of a structure under an earthquake ground motion. The concept was modified by
Kuramoto et.al [2000] to adopt the distribution of nonlinear story displacement as the first mode shape in
each calculation step. The method was adopted as one of the evaluation procedures in the Building

Standard Law, Japan.

The key concept of the Capacity Spectrum Method is to find out the intersection between the Demand
Spectra (= relationship between Sd (displacement spectra) and Sa (acceleration spectra)) and the Capacity

Curve (= nonlinear push-over curve of an equivalent single-degree-of-freedom system).

1400

1200 | Demand Spectra
SA-SD(h=0.05)

1000 |

& Demand Spectra
D 800 SA-SD(h=0.14)
g Bﬁ;Capacity Cune
o 600 /oo oo== SO
h /| — - -
/ e
400 | / e :
/ e Performance Point
/ L
200 f £,/ -1
i’ - -
e
'
0
0 10 20

Sd (cm)

Figure 6-2-1 Schematic example of the concept of Capacity Spectrum Method

As discussed in 5.3 Modal analysis, if we consider the first-order mode to be dominant in a

multi-story building, the displacement and acceleration of the equivalent one mass model are
expressed as,

S mu? > mh

> mu,’
Sp = i=nl ;o Sy=— Qs = = 2 Qs (6-2-1)

Representing the displacement by the inelastic rather than the elastic first-mode shape is
consistent with characterizing the structure by its secant stiffness to maximum response.
Therefore, “STERA 3D” provides the menu in the static analysis to show the Capacity Curve based on the

following formula (Kuramoto et.al [2000]):
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Sp=tt——, S,="Ft—5Q (6-2-2)

where,
m; lumped mass in the i-th story
Aj: component of the distribution of nonlinear story displacement in the i-th story
————— >
= " S
‘\‘ : Il’ @. - _('h \Il
o e -
\ i /! Ai III
= - /
\\ : " ~~ /
\ | h ~ ! T
=) o <‘,:| M Sa
n/ #// ,’I I\_/I . Equivalent SDOF mass
\‘I 7/ II
Nonlinear static push-over analysis Capacity Curve of SDOF system

Figure 6-2-2 Capacity Curve of the equivalent SDOF system

As schematically shown in Figure 6-2-2, the step-by-step results of nonlinear push-over analysis is used to

obtain the Capacity Curve of the equivalent SDOF system using Equation (6-2-2).
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7. Lumped Mass Model

7.1 Decomposition of shear and flexural deformation

a-1) Equivalent plane for each floor from displacement

The equivalent plane (z = ax + by + ¢ ) is obtained from the vertical displacement distribution by the least

square method:

\Z/ Z=ax+by+c
4 i/_____T /'/ T ,/, T z
| v x
y
Figure 7-1-1 Equivalent plane

Minimize L=>"(z, - (ax; + by, +¢))’ (7-1-1)

where, i : node number in the floor

a, b, c: parameters of equivalent plane
L L L

Thus, o =0, o =0, o =0 (7-1-2)

oa ob oc

Parameters, a, b, ¢ are obtained by solving the following linear equation:

D n%, DNy 2% [a
z Ziyi |= z yi2 z Yi | b (7-1-3)
>z, sym. n |lc

where,
N : the number of nodes in a floor
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a-2) Equivalent plane for each floor from potential energy

The equivalent plane (z = ax + by + ¢ )is obtained from the vertical potential energy distribution by the

least square method:

4 4

AT J/// Nz = N (ax+by +c)

y
Figure 7-1-2 Equivalent plane
Minimize L="(N;z,—N, (ax +by, +¢c))’ (7-1-4)
where, 1:node number in the floor
N.: axial load at node i
a, b, ¢ : parameters of equivalent plane
Thus, o =0, o =0, o =0 (7-1-5)
oa ob oc

Parameters, a, b, ¢ are obtained by solving the following linear equation:

ZNiZiXi ZNiXiz zNiXiyi ZNiXi a
z Nizy; | = Z NiYi2 z N;Y; b (7-1-6)
D> Nz, sym. SN, ||c

where,
N : the number of nodes in a floor

At this moment, STERA_3D adopts the formulation a-1), since it is easier to implement.
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b) Decomposition of shear and flexural deformation

A story drift, D, can be divided into shear and flexural components as,
D = D4 (shear) + D, ( flexure) (7-1-7)

Assuming the distribution of floor deformation is expressed by an equivalent plane (z = ax + by + ¢ ), the

flexural deformation, D¢ , can be expressed as,

D =-aH : X-direction (7-1-8)
De =bH . y-direction (7-1-9)

Note that the coefficient ‘a’ is the negative angle in x-direction.
Then, the shear deformation can be obtained as,

D, =D-D, (7-1-10)

in x-direction

in y-direction

z

Figure 7-1-3 Decomposition of shear and flexural deformation
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7.2 Lumped mass model with shear and flexural stiffness

a) Linear flexural model
The frame model can be idealized as a lumped mass model with a concentrated mass at each floor and

shear and flexural springs in each story.

Figure 7-1-4 Idealization to lumped mass model

Under the external lateral forces, Fi (i=1,2,3), the shear force and moment of each story are expressed

as below.
93
h3 Q=FK
T F, ——» M, = Fh, =Qh,, 6,
h, Q,=FK+F,
—_ Fl Mz:F2h2+Fs(h2+h3):Q2h2+Q3hsv 91
h, < /,L\ Q=F+F+F
1 f v
Ml = F1h1+ Fz (hl+h2)+ Fa(hl"'hz +h3) :thl"‘thz +Q3h3
Figure 7-1-5 Moment and shear force of lumped mass model
In general
N
M, = Zthj (7-1-11)
j=i

Note that if we consider the sign of coordinate

N N
M yi = _Z ijhj ’ M xi ZQyjhj (7_1_12)
j=i j=i
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From the beam theory

R

~

(R
hto
s
gA:TﬁRg/ M.| 2Ei[2 1]fr,] 2eE1[2 1][6,-R
g Mg h |1 2]||7g h |1 2|6-R
W
(7-1-13)
M A
M”l /\/ I\/|i+1
h El h EI/
Mi \_/\ _Mi
Figure 7-1-6 Moment and rotational deformation
Substituting
M,=-M;, Mg=M,;,, 7,=6,, 753=6,+A6, EI=El, h=h
-M, 2EI.12 1 6, 2El. | 36, +A0,
=—1 =—1L (7-1-14)
Mi+l hi 12 9i—1+Aei hi 39i—1+2A0i
Therefore, the equivalent flexural stiffness can be obtained as
h .
EI:—I M +M , |:1,...1n
i ZAHI ( i+1 i )
h (7-1-15)
El ,=—" (M
n+l 2A9n+1 ( ﬂ+l)
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The increment of rotational deformation A, is the difference of floor angle. Therefore,

AG, =0,
. (7-1-16)
A =60-6_,, 1=2,---,n+1
From the beam theory, the flexural deformation is
0 +6 7-1-17
M,+M 6El o
) Q=-— Ah B —_ = {(6,+6,)—-2R}, R:F
Therefore, the flexural deformation of i-th story is obtained as
o hl
D
T 12E, 261 27
(7-1-18)
D.. = h Q +h (6,+6), i=2--n+1
o 12El - L

The shear deformation is then calculated substituting the flexural deformation from the story drift as

Ds =D, - Dy (7-1-19)

Under the nonlinear push over analysis, it is generally assumed that the flexural component is elastic and

only the shear component is considered as nonlinear.

25F

24F ﬁ u
22F Shear deformation .
(nonlinear) Hysteresis

Flexural deformation
(linear)

Figure 7-1-7 Decomposition of shear and flexural deformation
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Therefore, the lumped mass model is obtained from the following procedure:

In the first step of push-over analysis (in elastic stage)
1) Calculate equivalent plane (z = ax + by + ¢ ) of each floor to obtain the flexural angles &, or b,
2) Calculate increment of angle A6, =a,—a,, or A6 =b —-Db_;

3) Calculate the flexural stiffness
h,

El. = M., +M, 7-1-20
i 2A9 ( i+1 ) ( )
4) Calculate the flexural deformation
h* h.
D, =— i~ (a,+a) or Dy b ,+b 7-1-22
L 12El Q 2 (3.+a) 12EI ( 1) ( )
5) Calculate the shear deformation
Dy = D, - Dy (7-1-23)

From the next step, we use the same flexural stiffness obtained previously.

6) Calculate increment of angle

h
AO = M M, 7-1-24

i+1
i

7) Calculate flexural angle of each floor

a = ZI:AHk or b = ZI:Aé’k (7-1-25)
k=1 k=1
8) Calculate the flexural deformation
3
D, :12h|i5|i Q —%(ail+ai) or D, 12EI (b, L +h) (7-1-26)
9) Calculate the shear deformation
D, =D, — Dy (7-1-27)

10) The relationship between the shear deformation and the shear force is idealized as a nonlinear

hysteresis model of the shear spring of each story.
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b) Nonlinear flexural model

To consider nonlinear flexural component, the model to separate shear deformation and bending eformation
is used.
Reference) Akira Wada, et. Al. “Response Control Design of Buildings”, Maruzen (in Japanese), 1998

s
i
.

A
S,

6’y = 6’ym + Hys = ? (7-1-28)

M M

Hymz_y’ 5xs:Qx’ Qx: >
K, k. h
M 2
6,=60, h+60 h= yh+QX:&h2+&: h—+i Q, (7-1-29)
’ ’ kb ks kb ks kb ks

Therefore, the relationship between the displacement and the force is expressed as follows:

Q, =k, kK SR - (7-1-30)

“ (h? 1
7_|_7
kb ks

From nodal displacement,

S, =Ug —U, =[-1 1]{”*‘\} (7-1-31)

uxB
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93

h3 Q=FK

-1 FF— M, = Fshs = Q3h31 0,

N, =W, +W

h, ‘ ’ ’ Q,=FK+F

1 F—> M, = Fh, +F,(h, +h)=Q,h, +Q;h,, 4,

N, =W, +W, +W,

h, b Q=F+F,+F

1 N

N\

Ml = F1h1+F2(hl+h2)+ Fa(hl"'hz +h3):Q1h1+Q2h2+Q3h3

Figure 7-1-5 Moment and shear force of lumped mass model

By substituting

MA:_Mi’ MB:MHl’ QA:Qi’ QB:QHl’ NA:Ni’ NB:Ni+l’

0,=06,, G5=6, u,=u_, U=

i 5A=5i’ 5B=5i+l’ i

the lumped mass model is obtained from the following procedure from the push-over analysis.

1)

2)

3)

4)

5)

Calculate equivalent plane (z = ax+by +c) of each floor to obtain the flexural angles a, or b,

and the vertical location at the center of gravity (Xci, yci) as z, =ax; +by,+cC.

Calculate shear deformation
Oy =U; —nh6, (7-1-32)
o4 =U—U_,—nh6, 1=2,---,n+1 (7-1-33)

Note that 77 =—1 for & =a, (x-directionyand 77 =1 for &, =b, (y-direction)

Calculate the shear stiffness
kg =Q. /b4 (7-1-34)
Calculate axial deformation
Ey =0, (7-1-35)
£y =0,—8.,, i=2,---,n+l (7-1-36)

i
Note that &, =z, —Z h,

i
k=1

Calculate the axial stiffness
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K = N; /&, (7-1-37)
6) Calculate moment at each floor

N
M. :nZthj (7-1-38)
=

Note that 77 =—1 for (x-direction) and 77 =1 for (y-direction)
7) Moment of the bending spring is

M, =M,, i=1---,n (7-1-39)
The rotational deformation of the bending spring is
b =6,-0., (7-1-40)

The bending moment and the angle are transformed to the equivalent shear force and the equivalent story
drift as follows:

K

Equivalent shear force Q, =% > Q =h—25b =K,.5,
Equivalent story drift o, = h¢
Equivalent stiffness Q, =K, .5y, Ky, =%
After finding the tri-linear model for Q, — &, relationship, it is returned to M, — ¢ relationship as,
M, =Q,h, ¢:%, k, =k, h?

In dynamic analysis, the rotational inertia at each floor is neglected.
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¢) Trilinear modeling of push-over curve

From the push over results up to the ultimate deformation (for example, up to 1/50 drift ratio), the

relationship between the story drift (shear o, bending &, ) and the shear force (shear Q,, bending

Q, ) of each story is transformed into a tri-linear skeleton.

P1 (D1, Q1)

P3 (D3, Q3)

<Casel>

When the drift ratio (drift divided by the story height) of the last point is less than the minimum value (for

example, 1/1000)

The skeleton is assumed to be linear.
P1 (D1, Q1)
The last point is P1
K1=Q1/D1
P2(D2, Q2)
D2 =2xD1
K2 =K1
P3(D3, Q3)
D3 =4xD1
K3 =K1

@ P3(D3,Q3)

! K3
1
1
1
1

¢ P2 (D2, Q2)

1
1

K2

1

,b' P1 (D1, Q1)
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<Case2>
When the last stiffness is large (for example, tangent stiffness > 0.1 K1 (initial stiffness))

P1(D1, Q1)
Find initial stiffness K1
Find Q1 that is the force when the tangent stiffness becomes 0.8K1 and determine D1 = Q1/K1

P2(D2, Q2)

The last point is P2.
K2 is the stiffness between P1 and P2

P3(D3, Q3)
D3 = 2xD2

K3 = K2
& p3(D3, Q3)

#  P2(D2,Q2)
K2
," '/”I,
P1(D1, Q1) &4 0.8K1
K1
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<Case 3>
When the last stiffness is small (for example, tangent stiffness < 0.1 K1 (initial stiffness))

P1(D1, Q1)
Find initial stiffness K1
Find Q1 that is the force when the tangent stiffness becomes 0.8K1 and determine D1 = Q1/K1

P2(D2, Q2)
P2 is decided to be the same energy between push-over analysis and the model up to P3

P3(D3, Q3)
P3 is the last point of push-over analysis

K3 is the tangent stiffness at P3

P3(Q3,D3)

K3 = tangent K

.-7 0.8K0
P1(Q1,D1) &~/
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8. P-D effect

The formulation in this chapter is based on the following book:

James F. Doyle, “Static and Dynamic Analysis of Structures”, Kluwer Academic Publishers, 1991

a) Equilibrium of the beam with an axial load

We consider equilibrium of the beam with a slight displacement with an axial load.

A
Figure 7-2-1 Equilibrium of small beam segment slightly deformed

Assuming small deflection, the balance of moment on the small segment “Ax” gives

AM +V (Ax)-F,(Av)=0 (8-1-1)
Therefore
M vor Py (8-1-2)
dx dx
2
From the relationship, M = El —, the governing differential equation for the deflection shape is
X
d*v d?v
El —-F,—=0 8-1-3
dx* % dx? (-13)

The general solutions are,
for compression loading (F, < 0):

V(X) = ¢, coskx +C, sinkx +c,x+¢,, k®=-F,/El, (8-1-4)
for tensile loading (F, > 0):

V(X) = ¢, coshkx +c, sinhkx+c,x+c,, k*=F,/El (8-1-5)
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b) Geometric stiffness matrix of the beam with an axial load

We assume that the axial force is constant and compressive. From the general solution, Eq. (8-1-4),
at x=0

dv(0)

v(0)=v, =c, +c,, ——=¢ =kc, +cC, (8-1-6)

Consequently, the deflected shape is
V(x) = ¢, (coskx —1)+ ¢, (sin kx — kx) + v, + @, (8-1-7)

Similarly at the end of other node,

v(L) =V, =¢,(coskL —1)+c, (sinkL —KL) +v, + ¢, L (8-1-8)
% = ¢, = —kc, sinkL + kc, coskL + ¢ (8-1-9)
X

Then, the coefficients, C,, C,, can be arranged as,

{(1_(:) (f—S) :||:Cl:| :|:V1 +¢1L_V2} (8-1—10)
‘fs 5(1_C) C, ¢1L_¢2L

where,

C =coskL, S =sinkL, ¢&=KkL (8-1-11)

Solving this equation by Cramer’s rule gives

¢, =[,E(L-C)+AL(S - &C) -V, &(1-C)+ 4, L(£ - S)]/ A (8-1-12)
¢, =[Vi&S +ALU-C - &) +v,&S +4,L(C-D]/A (8-1-13)
where

A=E(2-2C- &) (8-1-14)

Now we can rewrite the deflection function in terms of the nodal degrees of freedom. The moment and

shear force distributions can be obtained as

d*v [ 2 2n o ]

M (x) = El o Ell-k“c, coskx —k“c, sinkx (8-1-15)
d’v dv

V(x) = —El ot FO&:—EIkz[qﬁl—kcz] (8-1-16)
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Calculating nodal loads, V (0) =-V,, M(0)=-M,,V (L) =V,, M(L) = M, the stiffness matrix is

Vi §'s  éL-C) -&*S 4@1-C) |
M| E_:f_z ~L*(¢C-8) -é@-C) L(-9) |4 6-1.17)
V, | LA £2S -a@-C) |V,
M, sym. ~L*(¢C-9) | 4

c¢) Approximation of geometric stiffness matrix

We simplify the geometric stiffness matrix to be linear in the loading Fo.

Using the series expansion for the sine and cosine terms, the determinant is,

A=¢(2-2C-5)

~ 22— E2 12454 124- 5 T20 40— E(E- 216+ £51120—)|  (8-1-18)
~ & fi-£2 115+ )12

also
1 12
=N+ E2/154 - 8-1-19

We now do the expansion on the stiffness terms. For example,

2
I I T DTN | L AT S L R T N
L A L ¢ L
(8-1-20)
Substituting £° = k*L* = —F,L/El,
El F, |12
K, =—|12|+-2| = 8-1-21
u =5 2] LM (8-1-21)
In the same manner, we can expand for all the stiffness terms to get the stiffness matrix as
12 6L -12 6L 36 3L -36 3L
El 4 -6L 2% | F, 4L -3L -L°
k]=— + (8-1-22)
L 12 -6L| 30L 36 —-3L
sym. 412 sym. 412
We can write as
[k]=[ke ]+ [ke ] (8-1-23)

where, [kE ]: the element elastic stiffness, [kG ]: the element geometric stiffness
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d) Implementation for beam element

Figure 7-2-2 Including node movement

For beam element,

M,| 2EI|2 1|z,| EI|l4L* 217 |7,
= == , (8-1-24)
Mg L |1 2|74 L |2L° 4L° | 7q

Including node movement,

uA
T = 1 -1 Ol o
{ A}= '1- '1- A (8-1-25)
Tg T 0 —= 1Ys
L L 0,
. 1 1]
Q = = r u
’ L L 2 2 1 1 1 0 ’
M,| ElI| T o [42 212 C e,
Q | U1 _Tior a2l o, 1 lu,
M) | o 1'—_ L L o,
(6L 6L |, 1 ua 12 6L -12 6L Ju,
S SR e I -] ar 6L 2% |,
L|l-6L —6L|1 o 1 ;lug| L° 12 -6L | ug
217 417 L L Je, sym. 417 || 6,
From (8-1-22), the geometric stiffness matrix will be
36 3L -36 3L
F 42 -3L -L?
ke J=—=- (8-1-26)
30L 36 -3L
sym. 412
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Therefore, the stiffness equation will be

Q, 12 6L
M, El 41°
Q| |

M, sym

-12 6L
-6L 2L°
12 -6L

41°

+

I:O
3oL
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36

sym.

3L
41°

- 36
-3L
36

3L
— 12
-3L
412

Q & © <

>

>

w
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e) Implementation for column element

Figure 7-2-3 Including node movement

Aol

II

AL
‘M, | 2E1[2 1]
_MYB_ L _1 i
‘M, ] 2EI[2 1]
Mg | L [1 2

TyA

TyB_

Z-xA

z-xB a

Including node movement,

1

NN

5 s

1

I

| |
|-

o [N
|-

Note that the matrix for node movement in X-Z plane is different from that of beam element. The

S = © <
%

yB

S & © <

xB

212

412

212 4L2_
42 21
212 4L2_
in X-Z plane
in Y-Z plane

force-deformation relationship in X-Z plane is then,

TyA

L Ty8

TXA

LT
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in X-Z plane

in Y-Z plane

(8-1-27)

(8-1-28)

(8-1-29)

(8-1-30)



1
Qa -=
L
M A | _ ﬂ 1
QxB I—3 l
L
M g 3
-6L -6L
_El 412 212
| 6L 6L
212 4172

=)

8

L3

sym.

uxA
O,
uxB
Oy
12 [-6L] -12 [=6L] u,,
417 [ 6L ] 2% | 6,4
12 [6L Jlu,
4% || 0,4
(8-1-31)

Considering the difference of sign of stiffness matrix in X-Z plane, the geometric stiffness matrix will be

[kyG]:

30L

36

| sym.

sym.

(36 [-3L] 36 [-3L]

412 [ 3L ] -1
36 [ 3L |
417 |
3L -36 3L
412 -3L - L
36 -3L
412

in X-Z plane

in Y-Z plane

(8-1-32)

(8-1-33)

Therefore, changing the order of vector component, the force-deformation relationship of column will be

Qua
Qe
M.
M g
Qya
Qe
M

XA
xB
ZA
B

ZA

= Iz =<5

B

C c O © <
B s b3

>
b3

x
@

TS >
@

(36 -36
~36 36
~3L 3L
-3L 3L

0 0

F|l 0 0

N

3Ll 0 O
0 0

0 0

0 0

0 0

0 0

-3L
3L
412
— L2
0

O O O O o o o

-3L
3L
— 12
412
0

O O O O o o o
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0
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0
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— 12
412
0
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0
0
0
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o
=
>

uxB

0,

0,5

UyA

K]+ K T (8-1-34)

O

exB

§ZA

0.5

ezA

ezB

where,
36 -36 -3L -3L 0 0 0 0 00 0 0]
-3 36 3L 3L 0 0 0 0 00O0O
-3L 3L 4L -L*> 0 o0 0 0 0000
-3L 3L -L* 42 0 o0 0 0 0000
0 0 0 0 3 -36 3L 3L 00 00
F |0 0 0 0 -36 3 -3L -3L 0 0 0 0
[Ke]==2 , , (8-1-35)

3oLl 0 0 0 0 3L -3L 42 -L2 0 0 0 O
0 0 0 0 3L -3L -L* 4% 0000
0 0 0 0O 0 0 0 0 00O0O
0 0 0 0 0 0 0 0 00O0O
0 0 0 0 0 0 0 0 00O0O
0 0 0 0O 0 0 0 0 00 0 O]

Then, applying translation of Equation (2-2-17), the constitutive equation of the column is;

R U
sz =[Kc] u;2 (8-1-36)
3 N

where,

[Ke]=[Te I ke e ]+ [Tie T [Ke I ] (8-1-37)
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9. Unbalance force correction

a) Procedure to correct unbalance force
In nonlinear analysis, sudden change of spring stiffness sometimes causes severe error for estimating
element force. For example, estimation of spring force f,,, is overestimated in Figure 9-1-1 and

“unbalance force” is defined as,

Af = —f/ (9-1-1)

i+1

where, f/'; is the force on the nonlinear skeleton curve

The most preferable way to minimize the error is to adopt iterative calculations such as
Newton-Raphson method. However, this iteration may consume calculation time significantly.
Therefore, the following simple way is adopted to correct unbalance force:

1) Calculate unbalance displacement Ad from the unbalance force Af

Ad = Af [k (9-1-2)

where, K is the spring stiffness

2) Subtract unbalance displacement Ad from the increment displacement in the next step

calculation
f
i+1
fi+1 “““““““ , N
> Af
S S— i
¥
L S Ad |
ki
1 : d
di di+1

Figure 9-1-1 Unbalance force
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b) Unbalance force correction of MS model

For the Multi-spring model (MS model) of Column element, the sum of the unbalance forces of

nonlinear vertical springs in the member section is calculated as:

5

AN = ZS:Afi =3 (af,, +Af,,) (9-1-3)

i=1 i=1
where Af_; :unbalance force of concrete spring,

Af
The unbalance displacement is then calculated as:

: unbalance force of steel spring

S,i

5

5

AD = AN / >k =AN/S (kg +ki,) (9-1-4)
i=1 i=1

where Kk_. : stiffness of concrete spring,

C,1

K, : stiffness of steel spring
In the next step calculation, the increment displscement of each spring is ajusted as follows:

Ad/ =Ad, — AD (9-1-5)
where  Ad,: increment displacement of i-th spring

Ad! : adjusted increment displacement of i-th spring

\ 4

Figure 9-1-2 Unbalance force in MS-model

The same procedure is adopted for the MS model of Wall element.
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10. Calculation of ground displacement

In STERA_3D, the ground displacement is calculated from the ground acceleration data using FFT method

and filtering techniques based on the description in the following reference:

Reference: Yorihiko Osaki, “Introduction of Spectral Analysis of Earthquake Ground Motion”, Kajima

publishing corporation, 1981 (in Japanese)

a) Discrete Fourier Transform

Assume that the acceleration data is collected at an interval, At=T /N and consists of the
N measurement data X, (m=0,1,2,---,N—-1), where T is the period of the data that

corresponds to the duration time of data. The coefficient of a Fourier series is obtained as:

1 N-1
C, = x e '@k =0,1,2,---,N -1 (10-1-1)

m=0
The inverse discrete Fourier transform is

N-1 )
=> Ce'®" m=0,1,2-,N-1 (10-1-2)

b) Integration of the data in time domain

Assume Y. (m=0,1 2,---, N —1) is the integration of the discrete data X, in time domain.

The data Y, is obtained by the following inverse discrete Fourier transform:

(pemat NAt § gi(2mIN)
ym_UO det) ZS m=0,12+,N~-1 (10-1-3)

27 o

where, the coefficients S, are obtained from the coefficients C, as,

2y, _ZN’“Im 7r(N -1)C,
T NAat T & N
. iC .
S, = ﬂﬁo [—1+|cos(7zk/N)]—|Tk, Sy =Sy k=12 N/2-1 (10-1-4)
aC
Sle - NO
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The following band pass filter (Butterworth filter) in frequency domain is applied to the

coefficient S, .

Gy (f)=G.(f)G,(f) (10-1-5)
G (f)= (10-1-6)
G, (f)= S (10-1-7)
" 1+(f/f,)"

1.2 1.2
—N=3

1 1
ﬁ' \ —

0.8 0.8
N=10

0.6 —N-3 0.6

0.4 —_—N=5 0.4

02 N=10 02

0 0

0 0.5 1 15 2 0 0.5 1 1.5 2
G_(f) G, (f)

Figure 10-1-1 Butterworth filter
STERA 3D adopts the following frequency parameters:

f,=01 (Hz)
f, =20 (Hz)
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¢) Calculation flow
The ground acceleration data is integrated twice to obtain displacement data. Band pass filter is applied

each time of the integration. The flow of calculation is summarized below:

[1] From acceleration data to velocity data
X, (Mm=0,1,2,---,N -1)
l FFT Calculate Fourier coefficients of the data
C, k=0,12,---,N-1
l Eg. (10-1-4) Calculate Fourier coefficients of the data of the integration
S, k=012,---,N-1
l Eqg. (10-1-5) Apply band pass filter

hS, k=012 N-1

IFFT Calculate the data of integration by Inverse Fourier transform
Yy, (m=0,12,---,N-1)

[2] From velocity data to displacement data

Repeat the above process again
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11. Damage Index

11.1 Damage Index of RC Members

Reference:

- Young-Ji Park, A. H. Ang (1985) “Mechanistic Seismic Damage Model for Reinforced Concrete”,
Journal of Structural Engineering, ASCE

1) Park and Ang Damage Index

STERA 3D adopts the following damage index, so called Park and Ang damage index, to evaluate the

structural damage under earthquake.

D:é‘_m_f_ﬂi:ﬁ_kﬂ Eh

—hn (11-1-1)
6, ~Qd, wu, QO

where
O = My, : maximum deformation under an earthquake,
o, = M0, . ultimate deformation under a monotonic loading,
y7 : maximum ductility factor under an earthquake,
M, . ultimate ductility factor under a monotonic loading,
o, . yield deformation,
Q, yield strength,
p . parameter related to the cumulative loading effect,
E,= IdE . dissipated hysteretic energy.

Figure 11-1-1 Force-deformation relationship of the member
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The cumulative ductility factor is the ratio of the cumulative dissipated energy defined as

n= E, (11-1-2)
any
The damage index can be rewritten as
D=fm gl (11-1-3)

H, H,

2) RC Beam and Column

Ultimate ductility factor
According to Park and Ang (1985), the ultimate ductility factor, z, , for reinforced concrete beams and

columns is highly variable and depends on the failure mode of the member as shown in Figure 11-2.

T 1 i 1 T
O ~ Comp. Flexural Failure
» s X - Tens. Flexural Failure
50 5 K 8 - Comp. Shear Failure 7
N %a” T~ Tens. Shear Failure
mt o
]
O o8
%O UOQ 0(} 06!
00 L
o o0 :
M 00 by 05
5 | 8 05 3 N
s SSE s o 8
oo S
1 , %'-?}ba 3
- 5 q . R
2 T‘S $¢_ﬁb.5 i
T S'{ 25. S{
| o E T 3 T .
10 05 F 5T
5

o5 ! T

| } | i ]

o2 05 10 2 ' 3]

Ep !’Eo

Figure 11-1-2 Ultimate ductility factor and failure mode (Park and Ang (1985))
In case of the flexural failure, the value is greater than 10. Therefore, in STERA_3D,

#Hy =15

is adopted for the nonlinear flexural springs at both ends of the reinforced concrete beams and columns.
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Parameter p

The parameter 3 represents the effect of cyclic loading on damage. According to Park and Ang (1985), 8 is
calculated as,

b= (—0.447 + 0.073% +0.24n, +0.314 p, j x 0.7 (11-1-4)
where

I/d :shear span ratio (replaced by 1.7 if |/d <1.7),

n, . normalized axial stress (replaced by 0.2 if n,<0.2),

P . longitudinal steel ratio as a percentage (replaced by 0.75% if p, <0.75%),

Pu . confinement ratio.

Figure 11-1-3 shows the comparison between the calculated and experimental results of B. The applicable

range of the above equation is

1.0<1/d<6.6
0<n,<0.52
0.2<p, <20
15.9 MPa< f_'(concrete strength) < 41.4 MPa (11-1-5)
1.5 - T
N=261 °
COV=60% - e ”D o i

Experiment B8

-.51 1
0.0 | 0.5 1.0
Calculated B

Figure 11-1-3 Parameter 3 (Park and Ang (1985))
The default values in STERA 3D are

u, =15
p=02
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3) RC Wall

There is not much study about the damage index of RC shear walls. Therefore, STERA 3D adopts
arbitrary values for z, and f.

STERA 3D adopts

u, =15

£ =0.05
for the nonlinear flexural springs at both ends of the reinforced concrete wall.
Also

H, =8

£ =01

is adopted for the shear spring of the reinforced concrete wall.

4) Damage Index of group of members

The damage index for a part of a structure, such as individual story and for the entire structure, can be

evaluated as the weighting average of damage indices of structural elements in the part.

n
D,i = 2 WD, (11-1-6)
i
where
Dar damage index of the part of the structure
n :number of elements in the part of the structure
W, . weighting factor of the i-th element.
D, . damage index of the i-th element

The weighting factor W, can be based on the dissipated hysteretic energy of each element as,

1 (11-1-7)
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11.2 Damage Index of Steel Members

Reference:

- Study on Seismic Performance for Super-High-Rise Steel Buildings against Long-Period Earthquake
Ground Motions, Building Research Institute, Building Research Data, No. 160, 2014,7 (in Japanese)

1) Steel Beam Connection
a) Damage index based on fatigue curve

The linear cumulative damage model known as the Miner rule is one of the frequently applied procedure

to estimate the cumulative damage index (CDI) of element with random cyclic loadings. It is described as,

col =Y <1 (11-2-1)
T N,
where
CDI : cumulative damage index
n; . number of cycles accumulated at strain level Ag;
N, . number of cycles to fracture

For the low cycle fatigue with the cyclic plastic deformation, the relationship between the strain amplitude

Ag, and the number of cycles to fracture N; is expressed by the Mason-Coffin equation as,

Ag (%)=C-N;”’ (11-2-2)

or

1
(Agi )2 (c jﬁ
N P R (11-2-3)
C Ag,

It can be written as follows using the ductility factor g instead of Ag,,

1 1
(]
Hi

According to Figure 11-2-1 in the report “Study on Seismic Performance for Super-High-Rise Steel
Buildings against Long-Period Earthquake Ground Motions” (BRI, 2014),

C=4-10

p=13
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Figure 11-2-1 Fatigue curve for different connection types of steel beams (BRI, 2014)

In this method, the number of cycles n, accumulated at strain level Ag; (or ductility factor zs) must be

calculated using the Rain-flow method.
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Appendix) Rain-flow method

Reference:

RAINFLOW CYCLE COUNTING IN FATIGUE ANALYSIS, Tom Irvine, 2018

The Rain-flow algorithm is the method for counting fatigue cycles from a time history.

Algorithm

1. Reduce the time history to a sequence of (tensile) peaks and (compressive) troughs.

2. Imagine that the time history is a pagoda.

3. Turn the sheet clockwise 90°, so the starting time is at the top.

4. Each tensile peak is imagined as a source of water that "drips" down the pagoda.

5. Count the number of half-cycles by looking for terminations in the flow occurring when either:

a. It reaches the end of the time history
b. It merges with a flow that started at an earlier tensile peak; or
C. It encounters a trough of greater magnitude.

Repeat step 5 for compressive troughs.

Assign a magnitude to each half-cycle equal to the stress difference between its start and
termination.

Pair up half-cycles of identical magnitude (but opposite sense) to count the number of complete
cycles. Typically, there are some residual half-cycles.

RAINFLOW PLOT

TIME
£

STRESS
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b) Damage index based on the maximum response

Since it is an intensive work to record the time history of strain (or ductility factor) for all beams and
calculate the damage index using the rain-flow method, a practical method is proposed using the maximum
ductility factor and the cumulative ductility factor (BRI, 2014).

The cumulative ductility factor is defined as

n= i (11-2-5)
Qyé‘y
(/Um _1) 9
Q —
S O = HuOy
3
N— E, ~ 4(/,m _1)Qy§y

The energy dissipation per cycle with the deformation of the maximum ductility ¢ is

E, = 4( 1, —1)Q,, (11-2-6)
Therefore, the equivalent number of cycles is

E o
N, =—"= 190, =1 (11-2-7)
E, 4(,le _1)Qy§y 4('um _1)
The number of cycles to fracture with the maximum ductility z,, is
1
Mo | P

N f = (?mj (11-2-8)

Therefore, the damage index is evaluated as
1
B
cDl = Ne _ L(ﬂj (11-2-9)
Nf 4(lum _1) C
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2) BRB (Buckling Restrained Brace)
Reference:
- Bucking-Restrained Braces and Applications, Edited by T. Takeuchi and A. Wada, JSSI, 2017

a) Damage index based on fatigue curve

The Miner rule is described as,

CDI = Z% <1 (11-2-10)

i i
The Mason-Coffin equation for the relationship between the strain amplitude Ag; and the number of
cycles to fracture N, is expressed as,

Ag (%)=C-N;”’ (11-2-11)

For the BRB (buckling restrained brace) damper, Takeuchi et al. (2008), proposed the following formulas,
A& (%)=05-N"*  (Ag(%)<0.1%)
Ag (%)=20.48-N"*  (0.1% < Ag; (%)< 2.2%) (11-2-12)
A& (%)=54.0-N°"  (2.2%< A& (%))

Strain Amp. A € (%)
100

I A Constant .-"mlp.il

10

D' r £ =ﬂ5.” '0‘1_4__‘_
e f

001}
£ =540-N 9"
p f

0.001 L - -
1 10 100 1000 10* 10% 10°

Failure Cycles Nr(cynlas}

Figure 11-2-2 Relationship between strain and number of cycles to facture (Takeuchi et al. (1985))
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By combining with Coffin-Manson equations,

(Ag; <0.1%)
n. n.

cor=y —— . —

Agi 0.4 Agi 049
0.5 20.48

b) Damage index based on the maximum response

(0.1% < Ag, < 2.2%)

(2.2% < As;)
n.

1
1

Ag, ) o7
54.0

(11-2-13)

Using the same concept as in the case of steel beams, the damage index is evaluated as

1

CDI = e :L(ﬂjﬂ
T Ae
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